- #1
Kostik
- 128
- 14
- TL;DR Summary
- Dirac infers the form of a change in coordinates from the fact that ##g_{\mu\nu}## remains a function of ##l_\sigma x^\sigma## only ... how?
In Dirac's discussion of gravitational waves ("GTR", Chap. 33), he is working in the case where ##g_{\mu\nu}## are plane waves: waves moving in one direction only. In this case, ##g_{\mu\nu}## is a function of the single variable ##l_\sigma x^\sigma##.
Here ##l_\sigma## is the wave vector, and one can show that ##l_\sigma x^\sigma## is a scalar.
Dirac claims that if, under a change of coordinates ##x^\mu \rightarrow x^{\mu'}##, the transformed metric tensor $g_{\mu'\nu'}$ remains a function of the single variable ##l_\sigma x^\sigma##, then the coordinate transformation must be of a certain form.
To be clear, the metric tensor transforms $$g_{\mu'\nu'} = {x^\rho}_{,\mu'}{x^\sigma}_{,\nu'} g_{\rho\sigma} \, .$$ Dirac states that if the metric tensor is a function of ##l_\sigma x^\sigma## only: ##g_{\mu\nu} = g_{\mu\nu}(l_\sigma x^\sigma)##, and if likewise $$g_{ {\mu'}{\nu'} } = g_{ {\mu'}{\nu'} }(l_{\sigma'} x^{\sigma'}) = g_{ {\mu'}{\nu'} }(l_{\sigma} x^{\sigma})$$ then the coordinate transformation must be of the form $$x^{\mu'} = x^\mu + b^\mu$$ where ##b^\mu## is a function of ##l_{\sigma} x^{\sigma}## only. How does he know that?
Here ##l_\sigma## is the wave vector, and one can show that ##l_\sigma x^\sigma## is a scalar.
Dirac claims that if, under a change of coordinates ##x^\mu \rightarrow x^{\mu'}##, the transformed metric tensor $g_{\mu'\nu'}$ remains a function of the single variable ##l_\sigma x^\sigma##, then the coordinate transformation must be of a certain form.
To be clear, the metric tensor transforms $$g_{\mu'\nu'} = {x^\rho}_{,\mu'}{x^\sigma}_{,\nu'} g_{\rho\sigma} \, .$$ Dirac states that if the metric tensor is a function of ##l_\sigma x^\sigma## only: ##g_{\mu\nu} = g_{\mu\nu}(l_\sigma x^\sigma)##, and if likewise $$g_{ {\mu'}{\nu'} } = g_{ {\mu'}{\nu'} }(l_{\sigma'} x^{\sigma'}) = g_{ {\mu'}{\nu'} }(l_{\sigma} x^{\sigma})$$ then the coordinate transformation must be of the form $$x^{\mu'} = x^\mu + b^\mu$$ where ##b^\mu## is a function of ##l_{\sigma} x^{\sigma}## only. How does he know that?