- #1
bznm
- 184
- 0
Missing template due to originally being posted in different forum.
I Have tried to solve a problem about infinite potential well with a delta well in the middle, but I haven't the results and so I can't check if the proceeding is wrong...
My attempt solution:
The Schroedinger's Equation is:
##\psi''(x)=\frac{2m}{\hbar^2} (V(x)-E) \psi (x)##
so we have: ##\psi''(x)=-\frac{2m}{\hbar^2} E \psi (x)##
I have assumed ##E>0##
Then I have translated the axis origin, and the segment [-a, a] now is [0,2a]
We have two wavefunctions:
##\psi_-=A\sin kx +B\cos kx## for ##0<x<a##
##\psi_+=C\sin kx +D\cos kx## for ##a<x<2a##
Conditions:
- from ##\psi_- (0)=0 \rightarrow B=0##
- from##\psi_+ (2a) = 0 \rightarrow \tan(2ka)=-D/C##
- from ##\psi_- (a) = \psi_+ (a) \rightarrow \tan(ka)=\frac{D}{A-C}##
- from normalization ##A^2=C^2+D^2=1##
- from ##\psi_+' (a)=\psi'_- (a)-\frac{2mg}{\hbar^2}\psi(a) \rightarrow kC \cos(ka) - Dk \sin(ka)= Ak \cos(ka)-\frac{2mg}{\hbar^2}A\sin(ka)##
I've tried substituting in the last relation the previous relations but I couldn't get to the result...
We have a particle in 1D that can moves only on ##[-a.a]## because of the potential ##V(x)=\begin{cases}-\lambda \delta (x), x\in(-a,a)\\ \infty, otherwise\end{cases}##
(##\lambda>0)##
I have to find the autofunctions, the expression of energy levels and say if the sprectrum is limited
My attempt solution:
The Schroedinger's Equation is:
##\psi''(x)=\frac{2m}{\hbar^2} (V(x)-E) \psi (x)##
so we have: ##\psi''(x)=-\frac{2m}{\hbar^2} E \psi (x)##
I have assumed ##E>0##
Then I have translated the axis origin, and the segment [-a, a] now is [0,2a]
We have two wavefunctions:
##\psi_-=A\sin kx +B\cos kx## for ##0<x<a##
##\psi_+=C\sin kx +D\cos kx## for ##a<x<2a##
Conditions:
- from ##\psi_- (0)=0 \rightarrow B=0##
- from##\psi_+ (2a) = 0 \rightarrow \tan(2ka)=-D/C##
- from ##\psi_- (a) = \psi_+ (a) \rightarrow \tan(ka)=\frac{D}{A-C}##
- from normalization ##A^2=C^2+D^2=1##
- from ##\psi_+' (a)=\psi'_- (a)-\frac{2mg}{\hbar^2}\psi(a) \rightarrow kC \cos(ka) - Dk \sin(ka)= Ak \cos(ka)-\frac{2mg}{\hbar^2}A\sin(ka)##
I've tried substituting in the last relation the previous relations but I couldn't get to the result...