- #1
sbhatnagar
- 87
- 0
More fun problems! Evaluate the following:
1. \( \displaystyle \sum_{n=0}^{\infty}\frac{(-1)^n \{ (2n+1)\sin^{2n+1}(k)+(-1)^n\cos^{2n+1}(k) \}}{\cos^{2n+1}(k)(2n+1)^2} \)
2. \( \displaystyle \sum_{n=1}^{\infty} \frac{\sin^4(2^n)}{4^n} \)
3. \( \displaystyle \sum_{n=0}^{\infty}\frac{\{ n+(n-1)x^2\}^2}{n!}\cdot \frac{x^{2n}}{(1+x^2)^{n+2}}\cdot \exp{ \left( \frac{-x^2}{1+x^2}\right)}\)
4. \( \displaystyle \sum_{n=1}^{\infty}\frac{2}{(2n-1)(2x+1)^{2n-1}} \)
1. \( \displaystyle \sum_{n=0}^{\infty}\frac{(-1)^n \{ (2n+1)\sin^{2n+1}(k)+(-1)^n\cos^{2n+1}(k) \}}{\cos^{2n+1}(k)(2n+1)^2} \)
2. \( \displaystyle \sum_{n=1}^{\infty} \frac{\sin^4(2^n)}{4^n} \)
3. \( \displaystyle \sum_{n=0}^{\infty}\frac{\{ n+(n-1)x^2\}^2}{n!}\cdot \frac{x^{2n}}{(1+x^2)^{n+2}}\cdot \exp{ \left( \frac{-x^2}{1+x^2}\right)}\)
4. \( \displaystyle \sum_{n=1}^{\infty}\frac{2}{(2n-1)(2x+1)^{2n-1}} \)