Infinite Series 2: More Fun Problems!

In summary, we have evaluated four series involving various mathematical expressions such as trigonometric functions, exponentials, and factorials. The first series is equal to the sum of a geometric series and a constant term. The second series involves a clever manipulation using the arctangent function. The third series can be transformed into a simpler form using a substitution, and the fourth series can be evaluated using the power series expansion of the logarithm function.
  • #1
sbhatnagar
87
0
More fun problems! Evaluate the following:

1. \( \displaystyle \sum_{n=0}^{\infty}\frac{(-1)^n \{ (2n+1)\sin^{2n+1}(k)+(-1)^n\cos^{2n+1}(k) \}}{\cos^{2n+1}(k)(2n+1)^2} \)

2. \( \displaystyle \sum_{n=1}^{\infty} \frac{\sin^4(2^n)}{4^n} \)

3. \( \displaystyle \sum_{n=0}^{\infty}\frac{\{ n+(n-1)x^2\}^2}{n!}\cdot \frac{x^{2n}}{(1+x^2)^{n+2}}\cdot \exp{ \left( \frac{-x^2}{1+x^2}\right)}\)

4. \( \displaystyle \sum_{n=1}^{\infty}\frac{2}{(2n-1)(2x+1)^{2n-1}} \)
 
Mathematics news on Phys.org
  • #2
4.Consider the series:$$\sum_n^{\infty}(\frac{1}{2x+1})^2n=\frac{4x^2+4x}{(2x+1)^2}$$ (1)Now, if we integrate (1), we will get:$$T=\sum_n^{\infty}\int(\frac{1}{2x+1})^{2n} dx=\sum_n^{\infty}\frac{-1}{2(2n-1)(2x+1)^{2n-1}}$$If $S$ our original sum, then:$$S=-4T=-4\int\frac{4x^2+4x}{(2x+1)^2}dx=-4(x+\frac{2}{2x+1})$$
 
  • #3
Hi also sprach zarathustra! You made a mistake.
also sprach zarathustra said:
4.Consider the series:$$\sum_{n=1}^{\infty}\left(\frac{1}{2x+1}\right)^{2n}={\color{red}{\frac{1}{4x(x+1)}}} $$ (1)now, if we integrate (1), we will get:$$t=\sum_{n=1}^{\infty}\int \left(\frac{1}{2x+1} \right)^{2n} dx=\sum_{n=1}^{\infty}\frac{-1}{2(2n-1)(2x+1)^{2n-1}}$$if $s$ our original sum, then:$$s=-4t=-4 \color{red}{\int\frac{1}{4x(x+1)}dx=-\int \frac{1}{x}-\frac{1}{x+1} dx = -\ln{x}+\ln{(x+1)}=\ln{\left( \frac{x+1}{x}\right)} }$$

My approach was quite similar to yours except that I directly used the expansion of ln(1+x).

\( \displaystyle \ln{\left(1+\frac{1}{2x+1} \right)}=-\sum_{n=1}^{\infty}\frac{(-1)^n }{n(2x+1)^n} \quad (1)\)

\( \displaystyle \ln{\left(1-\frac{1}{2x+1} \right)}=-\sum_{n=1}^{\infty}\frac{1}{n(2x+1)^n} \quad (2)\)

Subtracting (2) from (1):

\( \displaystyle \ln{\left(1+\frac{1}{2x+1} \right)}-\ln{\left(1-\frac{1}{2x+1} \right)}= \sum_{0}^{\infty}\frac{2}{(2n-1)(2x+1)^{2n-1}}\)

\(\Rightarrow \displaystyle \ln{\left(\frac{x+1}{x} \right)}= \sum_{0}^{\infty}\frac{2}{(2n-1)(2x+1)^{2n-1}}\)

\(\displaystyle \Rightarrow \sum_{0}^{\infty}\frac{2}{(2n-1)(2x+1)^{2n-1}} =\boxed{2 \cdot\coth^{-1}(2x+1)} \)
 
Last edited:
  • #4
It doesn't look like anybody else is going to post a solution.

\( \displaystyle \sum_{n=0}^{\infty}\frac{(-1)^n \{ (2n+1)\sin^{2n+1}(k)+(-1)^n\cos^{2n+1}(k) \}}{\cos^{2n+1}(k)(2n+1)^2} \)
[sp]
Let \( \displaystyle S=\sum_{n=0}^{\infty}\frac{(-1)^n \{ (2n+1)\sin^{2n+1}(k)+(-1)^n\cos^{2n+1}(k) \}}{\cos^{2n+1}(k)(2n+1)^2} \)

\( \displaystyle \Rightarrow S=\sum_{n=0}^{\infty}\frac{(-1)^n (2n+1)\tan^{2n+1}(k)+1}{(2n+1)^2} \)

\( \displaystyle \Rightarrow S=\sum_{n=0}^{\infty}\left[\frac{(-1)^n \tan^{2n+1}(k)}{2n+1} +\frac{1}{(2n+1)^2} \right] \)

It is known that \( \displaystyle \arctan(z)=\sum_{n=0}^{\infty}\frac{(-1)^n z^{2n+1}}{2n+1} \), so we get:

\( \displaystyle S= \arctan(\tan(k))+\sum_{n=0}^{\infty}\frac{1}{(2n+1)^2} \)

\( \displaystyle \Rightarrow S= k+\left( \frac{\pi^2}{6}-\frac{1}{4}\frac{\pi^2}{6}\right) \)

\( \displaystyle \Rightarrow S= \boxed{\displaystyle k+\frac{\pi^2}{8}} \)
[/sp]

\( \displaystyle \sum_{n=1}^{\infty} \frac{\sin^4(2^n)}{4^n} \)
[sp]
Note That: \(\displaystyle \frac{\sin^4(2^n)}{4^n}=\frac{\sin^2(2^n) \cdot \sin^2(2^n)}{4^n}= \frac{\sin^2(2^n) \cdot (1-\cos^2(2^n))}{4^n}= \frac{\sin^2(2^n)}{4^n}-\frac{\sin^2(2^{n+1})}{4^{n+1}}\)

\( \displaystyle \sum_{n=1}^{\infty} \frac{\sin^4(2^n)}{4^n} = \sum_{n=1}^{\infty} \frac{\sin^2(2^n)}{4^n}-\frac{\sin^2(2^{n+1})}{4^{n+1}}=\frac{\sin^2(2)}{4} +\sum_{n=2}^{\infty} \frac{\sin^2(2^n)}{4^n}-\sum_{n=1}^{\infty}\frac{\sin^2(2^{n+1})}{4^{n+1}} = \frac{\sin^2(2)}{4}+0=\boxed{\displaystyle \frac{\sin^2(2)}{4}}\)
[/sp]

\( \displaystyle \sum_{n=0}^{\infty}\frac{\{ n+(n-1)x^2\}^2}{n!}\cdot \frac{x^{2n}}{(1+x^2)^{n+2}}\cdot \exp{ \left( \frac{-x^2}{1+x^2}\right)}\)

[sp]
Let \( \displaystyle S=\sum_{n=0}^{\infty}\frac{\{ n+(n-1)x^2\}^2}{n!}\cdot \frac{x^{2n}}{(1+x^2)^{n+2}}\cdot \exp{ \left( \frac{-x^2}{1+x^2}\right)}\)

\( \displaystyle \Rightarrow S=\sum_{n=0}^{\infty}\frac{\left\{ n - \frac{x^2}{1+x^2} \right\}^2}{n!}\cdot \left(\frac{x^{2}}{1+x^2} \right)^n\cdot \exp{ \left( \frac{-x^2}{1+x^2}\right)}\)

Substitute \( \displaystyle y=\frac{x^2}{1+x^2} \).

\( \displaystyle \begin{align*} S &=e^{-y}\sum_{n=0}^{\infty}\frac{y^n(n-y)^2}{n!} \\ &=e^{-y}\sum_{n=0}^{\infty}\frac{n^2 y^n+y^{n+2}-2n y^{n+1}}{n!} \\ &= e^{-y} \left[\sum_{n=0}^{\infty}\frac{n^2 y^n}{n!}+ \sum_{n=0}^{\infty}\frac{ y^{n+2}}{n!}-\sum_{n=0}^{\infty}\frac{2n y^{n+1}}{n!}\right] \\ &= e^{-y} \left[y\sum_{n=0}^{\infty}\frac{n y^{n-1}}{(n-1)!}+ y^2\sum_{n=0}^{\infty}\frac{ y^{n}}{n!}-2y^2\sum_{n=0}^{\infty}\frac{ y^{n-1}}{(n-1)!}\right] \\ &= e^{-y} \left[y^2\sum_{n=0}^{\infty}\frac{ y^{n-2}}{(n-2)!}+y\sum_{n=0}^{\infty}\frac{ y^{n-1}}{(n-1)!}+ y^2e^y-2y^2 e^y\right]\\ &= e^{-y}(y e^y +2y^2 e^y-2y^2 e^y) \\&= e^{-y}(y e^y) \\&= y \end{align*}\)

\( \displaystyle S=y=\boxed{\displaystyle \frac{x^2}{1+x^2}} \).
[/sp]
 
  • #5
sbhatnagar said:
More fun problems! Evaluate the following:

1. \( \displaystyle \sum_{n=0}^{\infty}\frac{(-1)^n \{ (2n+1)\sin^{2n+1}(k)+(-1)^n\cos^{2n+1}(k) \}}{\cos^{2n+1}(k)(2n+1)^2} \)

2. \( \displaystyle \sum_{n=1}^{\infty} \frac{\sin^4(2^n)}{4^n} \)

3. \( \displaystyle \sum_{n=0}^{\infty}\frac{\{ n+(n-1)x^2\}^2}{n!}\cdot \frac{x^{2n}}{(1+x^2)^{n+2}}\cdot \exp{ \left( \frac{-x^2}{1+x^2}\right)}\)

4. \( \displaystyle \sum_{n=1}^{\infty}\frac{2}{(2n-1)(2x+1)^{2n-1}} \)

our teacher asked to us 4. problem
 

FAQ: Infinite Series 2: More Fun Problems!

What is an infinite series?

An infinite series is a sum of an infinite number of terms. It can be written in the form of a1 + a2 + a3 + ... + an + ..., where an is the nth term of the series.

How is an infinite series different from a finite series?

A finite series has a limited number of terms, while an infinite series has an infinite number of terms. This means that the sum of a finite series will eventually reach a finite value, while the sum of an infinite series may not reach a finite value and can diverge or converge.

What is the purpose of studying infinite series?

Infinite series are important in mathematics and other scientific fields as they can be used to represent various mathematical functions and phenomena. They also have applications in calculus, physics, and engineering.

How do you determine if an infinite series converges or diverges?

There are various tests that can be used to determine the convergence or divergence of an infinite series, such as the comparison test, ratio test, and integral test. These tests involve comparing the given series to a known series or function to determine its behavior.

What are some real-life applications of infinite series?

Infinite series have practical applications in finance, engineering, and physics. They can be used to model the growth of investments, design electrical circuits, and calculate the trajectory of objects in motion. They are also used in computer science and data analysis for algorithms and data compression.

Similar threads

Replies
14
Views
2K
Replies
3
Views
1K
Replies
1
Views
1K
Replies
2
Views
1K
Replies
1
Views
4K
Replies
6
Views
2K
Replies
7
Views
2K
Back
Top