- #1
Ascendant0
- 152
- 33
I understand mathematically several ways to test whether an infinite series converges or diverges. However, I came across one particular equation that is stumping me, ## \sum_{n=1}^{\infty} 1/n ##. I understand how to mathematically apply series tests to show it diverges. But intuitively, I thought it would surely converge, as the larger n becomes, the smaller the value. When (by the integral test) I came to find out it actually diverges (and yes, I am aware it's the correct answer), I'm now trying to fully wrap my brain around this, and hoping someone might be able to give me a different perspective to make sense of it. This is how I currently perceive it...
I understand the notion that as you increase the value of n, there is always going to be a value of n higher than that, which will have at least some amount of area under it, no matter how minuscule. But, the same goes for ## \sum_{n=1}^{\infty} 1/(n^2) ## , yet it converges? No matter how small of a value you plug in, there is still always going to be another higher value you can put in there that will have at least some amount of area under it. So long as it’s not directly on “0,” which it can never reach, there is always additional area under it through infinity. It never reaches 0, and continues indefinitely. So, based on the explanation given in the book as for why ## 1/n ## diverges, I fail to understand how a similar equation, just one that decreases much faster, converges?
I understand the notion that as you increase the value of n, there is always going to be a value of n higher than that, which will have at least some amount of area under it, no matter how minuscule. But, the same goes for ## \sum_{n=1}^{\infty} 1/(n^2) ## , yet it converges? No matter how small of a value you plug in, there is still always going to be another higher value you can put in there that will have at least some amount of area under it. So long as it’s not directly on “0,” which it can never reach, there is always additional area under it through infinity. It never reaches 0, and continues indefinitely. So, based on the explanation given in the book as for why ## 1/n ## diverges, I fail to understand how a similar equation, just one that decreases much faster, converges?