- #1
Saitama
- 4,243
- 93
Problem:
If $0<x<1$ and
$$A_n=\frac{x}{1-x^2}+\frac{x^2}{1-x^4}+\cdots +\frac{x^{2^n}}{1-x^{2^{n+1}}}$$
then find $\displaystyle \lim_{n\rightarrow \infty}A_n$.
Attempt:
I tried to see if it can be converted to a telescoping series but I had no luck. Then, I tried this:
$$\lim_{n\rightarrow \infty} A_n=\sum_{r=0}^{\infty} \frac{x^{2^r}}{1-x^{2^{r+1}}}=\sum_{r=0}^{\infty} \sum_{m=0}^{\infty} x^{2^r(2m+1)}$$
If I can figure out $\displaystyle \sum_{r=0}^{\infty} t^{2^r}$, the sum can be solved easily but I don't see a way to evaluate this.
Any help is appreciated. Thanks!
If $0<x<1$ and
$$A_n=\frac{x}{1-x^2}+\frac{x^2}{1-x^4}+\cdots +\frac{x^{2^n}}{1-x^{2^{n+1}}}$$
then find $\displaystyle \lim_{n\rightarrow \infty}A_n$.
Attempt:
I tried to see if it can be converted to a telescoping series but I had no luck. Then, I tried this:
$$\lim_{n\rightarrow \infty} A_n=\sum_{r=0}^{\infty} \frac{x^{2^r}}{1-x^{2^{r+1}}}=\sum_{r=0}^{\infty} \sum_{m=0}^{\infty} x^{2^r(2m+1)}$$
If I can figure out $\displaystyle \sum_{r=0}^{\infty} t^{2^r}$, the sum can be solved easily but I don't see a way to evaluate this.
Any help is appreciated. Thanks!