- #1
PWiz
- 695
- 116
I'm trying to derive what ##ds^2## equals to in spherical coordinates.
In Euclidean space, $$ds^2= dx^2+dy^2+dz^2$$
Where ##x=r \ cos\theta \ sin\phi## , ##y=r \ sin\theta \ sin\phi## , ##z=r \ cos\phi## (I'm using ##\phi## for the polar angle)
For simplicity, let ##cos \phi = A## and ##sin \phi = B##
Then ##dx=r \ cos\theta \ dB + B(cos \theta \ dr - r \ sin \theta \ d \theta)##
##dy=r \ sin\theta \ dB + B(sin \theta \ dr + r \ cos \theta \ d \theta)##
##dz= r \ dA + A \ dr##
When I add up the squares of the 3 differential elements above, gather similar terms and replace ##A## and ##B##, I get ##ds^2 = dr^2 + r^2 \ sin^2 \phi \ d \theta^2## , and you can see that one term is missing. Is something wrong with my approach?
In Euclidean space, $$ds^2= dx^2+dy^2+dz^2$$
Where ##x=r \ cos\theta \ sin\phi## , ##y=r \ sin\theta \ sin\phi## , ##z=r \ cos\phi## (I'm using ##\phi## for the polar angle)
For simplicity, let ##cos \phi = A## and ##sin \phi = B##
Then ##dx=r \ cos\theta \ dB + B(cos \theta \ dr - r \ sin \theta \ d \theta)##
##dy=r \ sin\theta \ dB + B(sin \theta \ dr + r \ cos \theta \ d \theta)##
##dz= r \ dA + A \ dr##
When I add up the squares of the 3 differential elements above, gather similar terms and replace ##A## and ##B##, I get ##ds^2 = dr^2 + r^2 \ sin^2 \phi \ d \theta^2## , and you can see that one term is missing. Is something wrong with my approach?