- #36
Lawrence B. Crowell
- 190
- 2
This is a continuation of the last post
With this definition of the gauge potential [itex]A_\mu[/itex]and the vacuum potential [itex]\Omega_\mu[/itex] we examine gauge transformations by the infinitesimal change in the sectional basis [itex]\delta {\vec e}~=~{\vec\epsilon}\times{\vec e}[/itex], for [itex]\vec\epsilon[/itex] an infinitesimal vector displacement of vectors in [itex]S^3[/itex] of [itex]SU(2)[/itex]. The vector symbol is for the vector part on [itex]S^3[/itex] For a general [itex]{A^\prime}^k_\mu[/itex] determined from [itex]A^k_\mu~=~-B^k_\mu[/itex] by a gauge covariant gauge displacement vector [itex]\chi^k_\mu[/itex] give the transformation
[tex]
e_i\delta A^i_\mu~=~e_i\partial_\mu\epsilon^i,~e_i\delta{A^\prime}^i_\mu~=~D_\mu e^i
[/tex]
[tex]
\delta B^i_\mu~=~-\delta B^i_\mu,~\delta\chi^i_\mu~=~-(\epsilon\times\chi_\mu)^i
[/tex]
which illustrates that the covariant gauge vector [itex]\chi^i_\mu[/itex] and the gauge potential are gauge independent. This covariant gauge vector is a chromodynamic-like field similar to a gluon, or the weak gauge bosons. These potentials determine the physical fields
[tex]
F^i_{\mu\nu}~=~\partial_\nu A^i_\mu~-~\partial_\mu A^i_\nu,~e_iG^i_{\mu\nu}~=~-{\vec e}\cdot\partial_\nu{\vec e}~-~{\vec e}\cdot\partial_\mu{\vec e}~=~e_i(\partial_\nu B^i_\mu~-~\partial_\mu B^i_\nu)
[/tex]
[tex]
{F^\prime}^i_{\mu\nu}~=~F^i_{\mu\nu}~+~G^i_{\mu\nu}
[/tex]
This then indicate that the vector portions of gauge connections [itex]A^i_\mu[/itex] transform identically with the [itex]SU(2)[/itex] portion of the connection [itex]B^i_\mu[/itex].
The basis vector [itex]\vec e[/itex] defines a phase [itex]U~=~e^{\phi\sigma\cdot\vec e}[/itex], for [itex]\sigma[/itex] a vectors of Pauli matrices. A momentum for a particle in the [itex]SU(4)[/itex] space is [itex]p_\mu~=~U\partial_\mu U[/itex], which when defined in a basis with [itex]cos(\phi)~=~0[/itex] gives the Lagrangian
[tex]
{\cal L}~=~\frac{1}{2}p_\mu p^\mu~+~\frac{1}{16}Tr\big([p_\mu,~p_\nu]\big)^2
[/tex]
[tex]
=~-\frac{1}{2}G^\prime_{\mu\nu}G^{\mu\nu}~-~B_\mu B^\mu,
[/tex]
for [itex]G^\prime_{\mu\nu}~=~G_{\mu\nu}~+~B_\mu\wedge B_\nu[/itex]. This Skymre Lagrangian then leads to the dynamical equation
[tex]
{\vec e}\times\nabla^2 {\vec e}~-~(\partial_\mu G^{\mu\nu})\partial_\nu{\vec e}~=~~0
[/tex]
This differential equation is [itex]\partial^\mu j^i_\mu~=~0[/itex] for the term
[tex]
j^i_\mu~=~({\vec e}\times \partial_\mu {\vec e})^i~-~G_{\mu\nu}e^i,
[/tex]
where the continuity equation defines a conservation of charge across flux tubes. With [itex]({\vec e}\times\partial_\mu{\vec e})^i~=~\epsilon^{ijk}B^k_\mu e^j[/itex] the current components are clearly of the form
[tex]
j^1_\mu~=~B^1_\mu~+~{G_\mu}^\nu}(B^2_\nu e^3~-~B^3_\nu e^2),~j^2_\mu~=~B^2_\mu~+~{G_\mu}^\nu}(B^3_\nu e^1~-~B^1_\nu e^3),~j^3_\mu~=~B^3_\mu~+~{G_\mu}^\nu}(B^1_\nu e^2~-~B^2_\nu e^1)
[/tex]
The third of these equations may be removed by the gauge condition [itex]D_\mu e^3~=~0[/itex], which reduces the problem to two dimensions. The two continuity equations found from [itex]\partial_\mu{\vec j}^\mu~=~0[/itex] are then
[tex]
\partial^\mu B^1_\mu~+~B^{3\mu}B^2_\mu~+~\partial^\mu{G_\mu}^\nu B^2_\nu~=~0
[/tex]
[tex]
\partial^\mu B^2_\mu~-~B^{3\mu}B^1_\mu~-~\partial^\mu{G_\mu}^\nu B^1_\nu~=~0
[/tex]
This equation may be replaced by the simple substitution [itex]\omega^{\pm}_\mu~=~(B^1_\mu~\pm~iB^2_\mu)/\sqrt{2}[/itex], which defines creation and annihilation operators for the [itex]SU(2)[/itex] field. The differential equation may be written as
[tex]
\omega^{\pm}\partial^\mu\omega^{\pm}_\mu~\mp~\omega^{\pm}B^{3\mu}\omega^\mp_\mu~=~\pm\omega^{\pm}\partial^\mu{G_\mu}^\nu \omega^{\mp}_\nu
[/tex]
which when integrated over [itex]S^3[/itex] the right hand side defines a charge according to a Chern Simons index
[tex]
kQ~=~\pm\int d^3x\omega^{\pm}\partial^\mu{G_\mu}^\nu \omega^{\mp}_\nu~=~\pm\int d^3x\epsilon_{ijk}\epsilon^{\mu\nu\sigma}\omega^i_\mu\omega^j_\nu\omega^k_\sigma
[/tex]
which is also an index for the knot equation. This index is then a topological invariant for the knot topology of the "gluon-like" threads.
This gauge theory with gluon threads on the manifold for conformal gravity connects spin-gravity terms in a multiply connected manner, which might be interpreted as wormholes. The index derived defines a topological invariant for this multiple connectivity in conformal gravity embedded in [itex]SU(4)\times SU(2)[/itex]. This structure will next be used to derive a form of noncommutative quantum gravity embedded in the heterotic group [itex]E_6[/itex], which in turn is embedded in [itex]E_8[/itex].
With this definition of the gauge potential [itex]A_\mu[/itex]and the vacuum potential [itex]\Omega_\mu[/itex] we examine gauge transformations by the infinitesimal change in the sectional basis [itex]\delta {\vec e}~=~{\vec\epsilon}\times{\vec e}[/itex], for [itex]\vec\epsilon[/itex] an infinitesimal vector displacement of vectors in [itex]S^3[/itex] of [itex]SU(2)[/itex]. The vector symbol is for the vector part on [itex]S^3[/itex] For a general [itex]{A^\prime}^k_\mu[/itex] determined from [itex]A^k_\mu~=~-B^k_\mu[/itex] by a gauge covariant gauge displacement vector [itex]\chi^k_\mu[/itex] give the transformation
[tex]
e_i\delta A^i_\mu~=~e_i\partial_\mu\epsilon^i,~e_i\delta{A^\prime}^i_\mu~=~D_\mu e^i
[/tex]
[tex]
\delta B^i_\mu~=~-\delta B^i_\mu,~\delta\chi^i_\mu~=~-(\epsilon\times\chi_\mu)^i
[/tex]
which illustrates that the covariant gauge vector [itex]\chi^i_\mu[/itex] and the gauge potential are gauge independent. This covariant gauge vector is a chromodynamic-like field similar to a gluon, or the weak gauge bosons. These potentials determine the physical fields
[tex]
F^i_{\mu\nu}~=~\partial_\nu A^i_\mu~-~\partial_\mu A^i_\nu,~e_iG^i_{\mu\nu}~=~-{\vec e}\cdot\partial_\nu{\vec e}~-~{\vec e}\cdot\partial_\mu{\vec e}~=~e_i(\partial_\nu B^i_\mu~-~\partial_\mu B^i_\nu)
[/tex]
[tex]
{F^\prime}^i_{\mu\nu}~=~F^i_{\mu\nu}~+~G^i_{\mu\nu}
[/tex]
This then indicate that the vector portions of gauge connections [itex]A^i_\mu[/itex] transform identically with the [itex]SU(2)[/itex] portion of the connection [itex]B^i_\mu[/itex].
The basis vector [itex]\vec e[/itex] defines a phase [itex]U~=~e^{\phi\sigma\cdot\vec e}[/itex], for [itex]\sigma[/itex] a vectors of Pauli matrices. A momentum for a particle in the [itex]SU(4)[/itex] space is [itex]p_\mu~=~U\partial_\mu U[/itex], which when defined in a basis with [itex]cos(\phi)~=~0[/itex] gives the Lagrangian
[tex]
{\cal L}~=~\frac{1}{2}p_\mu p^\mu~+~\frac{1}{16}Tr\big([p_\mu,~p_\nu]\big)^2
[/tex]
[tex]
=~-\frac{1}{2}G^\prime_{\mu\nu}G^{\mu\nu}~-~B_\mu B^\mu,
[/tex]
for [itex]G^\prime_{\mu\nu}~=~G_{\mu\nu}~+~B_\mu\wedge B_\nu[/itex]. This Skymre Lagrangian then leads to the dynamical equation
[tex]
{\vec e}\times\nabla^2 {\vec e}~-~(\partial_\mu G^{\mu\nu})\partial_\nu{\vec e}~=~~0
[/tex]
This differential equation is [itex]\partial^\mu j^i_\mu~=~0[/itex] for the term
[tex]
j^i_\mu~=~({\vec e}\times \partial_\mu {\vec e})^i~-~G_{\mu\nu}e^i,
[/tex]
where the continuity equation defines a conservation of charge across flux tubes. With [itex]({\vec e}\times\partial_\mu{\vec e})^i~=~\epsilon^{ijk}B^k_\mu e^j[/itex] the current components are clearly of the form
[tex]
j^1_\mu~=~B^1_\mu~+~{G_\mu}^\nu}(B^2_\nu e^3~-~B^3_\nu e^2),~j^2_\mu~=~B^2_\mu~+~{G_\mu}^\nu}(B^3_\nu e^1~-~B^1_\nu e^3),~j^3_\mu~=~B^3_\mu~+~{G_\mu}^\nu}(B^1_\nu e^2~-~B^2_\nu e^1)
[/tex]
The third of these equations may be removed by the gauge condition [itex]D_\mu e^3~=~0[/itex], which reduces the problem to two dimensions. The two continuity equations found from [itex]\partial_\mu{\vec j}^\mu~=~0[/itex] are then
[tex]
\partial^\mu B^1_\mu~+~B^{3\mu}B^2_\mu~+~\partial^\mu{G_\mu}^\nu B^2_\nu~=~0
[/tex]
[tex]
\partial^\mu B^2_\mu~-~B^{3\mu}B^1_\mu~-~\partial^\mu{G_\mu}^\nu B^1_\nu~=~0
[/tex]
This equation may be replaced by the simple substitution [itex]\omega^{\pm}_\mu~=~(B^1_\mu~\pm~iB^2_\mu)/\sqrt{2}[/itex], which defines creation and annihilation operators for the [itex]SU(2)[/itex] field. The differential equation may be written as
[tex]
\omega^{\pm}\partial^\mu\omega^{\pm}_\mu~\mp~\omega^{\pm}B^{3\mu}\omega^\mp_\mu~=~\pm\omega^{\pm}\partial^\mu{G_\mu}^\nu \omega^{\mp}_\nu
[/tex]
which when integrated over [itex]S^3[/itex] the right hand side defines a charge according to a Chern Simons index
[tex]
kQ~=~\pm\int d^3x\omega^{\pm}\partial^\mu{G_\mu}^\nu \omega^{\mp}_\nu~=~\pm\int d^3x\epsilon_{ijk}\epsilon^{\mu\nu\sigma}\omega^i_\mu\omega^j_\nu\omega^k_\sigma
[/tex]
which is also an index for the knot equation. This index is then a topological invariant for the knot topology of the "gluon-like" threads.
This gauge theory with gluon threads on the manifold for conformal gravity connects spin-gravity terms in a multiply connected manner, which might be interpreted as wormholes. The index derived defines a topological invariant for this multiple connectivity in conformal gravity embedded in [itex]SU(4)\times SU(2)[/itex]. This structure will next be used to derive a form of noncommutative quantum gravity embedded in the heterotic group [itex]E_6[/itex], which in turn is embedded in [itex]E_8[/itex].