- #1
ollielgg
- 2
- 4
- TL;DR Summary
- Brillouin states that an inhomogeneous hyperbolic PDE has a finite solution only if the RHS is orthogonal to the homogenous solutions
Hi, I've been reading Brillouin's 'Wave Propagation in Periodic Media'.
About the following equation
$$\nabla^2u_1+\frac{\omega^2_0}{V_0}u_1 = R(r)$$
Brillouin states that "it is well known that such an equation possesses a finite solution only if the right-hand term is orthogonal to all solutions of the homogeneous equation:"
$$\iint_{\text{all space}} u_1^*R(r) dr = 0$$
This is not a property of hyperbolic PDEs I've come across before. I wasn't able to find anything in my PDE textbooks. Would anyone be able to suggest why this is the case? I would be very appreciative.
About the following equation
$$\nabla^2u_1+\frac{\omega^2_0}{V_0}u_1 = R(r)$$
Brillouin states that "it is well known that such an equation possesses a finite solution only if the right-hand term is orthogonal to all solutions of the homogeneous equation:"
$$\iint_{\text{all space}} u_1^*R(r) dr = 0$$
This is not a property of hyperbolic PDEs I've come across before. I wasn't able to find anything in my PDE textbooks. Would anyone be able to suggest why this is the case? I would be very appreciative.