- #1
mathmari
Gold Member
MHB
- 5,049
- 7
Hey!
We have the initial and boundary value problem $$u_{xx}(x,y)+u_{yy}(x,y)=0 , x^2+y^2<1 \\ u(x,y)=0 \\ u(1, \theta)=\sin{\theta}, 0< \theta< \pi$$
$$U_{\rho \rho}(\rho, \theta)+ \frac{1}{\rho^2} U_{\theta \theta}=0, 0< \rho<1, 0< \theta< \pi$$
We are looking for solutions of the form $R(\rho) \Theta(\theta)$
$R(\rho) \Theta(0)=0 \Rightarrow \Theta(0)=0\\ R(\rho) \Theta(\pi)=0 \Rightarrow \Theta(\pi)=0$
$R''(\rho) \Theta(\theta)+ \frac{1}{\rho^2} R(\rho) \Theta''(\theta)=0\\ \frac{\Theta''(\theta)}{\Theta(\theta)}=-\rho^2 \frac{R''(\rho)}{R(\rho)}=-\lambda $
$\Theta''(\theta)+ \lambda \Theta(\theta)=0 \\ \Theta(0)=\Theta(\pi)=0$$\rho^2 R''(\rho)-\lambda R(\rho)=0$
$\lambda_k=k^2$
$\Theta_k(\theta)=\sin{k \theta}$
$\rho^2 R_k''(\rho)-k^2 R_k(\rho)=0$
We are looking for a solution of the form $R(\rho)=\rho^m \Rightarrow m(m-1) \rho^m-k^2 \rho^m=0$
$m^2-m-k^2=0$
$\Delta=1+4k^2$
$m=\frac{1 \pm \sqrt{1+4k^2}}{2}$
For $m>0$, the solution is unbounded.
$R_k(\rho)=\rho^{\frac{1+ \sqrt{1+4k^2}}{2}}$
$U_k(\rho, \theta)=\rho^{\frac{1+ \sqrt{1+4k^2}}{2}} \sin{k \theta}$
$U(\rho, \theta)=\sum c_k $We determine $c_k$$U(1, \theta)=\sum_{k=1}^{\theta} c_k \sin{k \theta}=\sin{\theta}$
$c_1=1\\c_k=0, k=2, \dots$
$$$$
Why is the problem in polar coordinates $$U_{\rho \rho}+\frac{1}{\rho^2}U_{\theta \theta}=0$$ and not $$U_{\rho \rho}+\frac{1}{\rho}U_{\rho}+\frac{1}{\rho^2}U_{\rho \rho}=0$$ ??
We have the initial and boundary value problem $$u_{xx}(x,y)+u_{yy}(x,y)=0 , x^2+y^2<1 \\ u(x,y)=0 \\ u(1, \theta)=\sin{\theta}, 0< \theta< \pi$$
$$U_{\rho \rho}(\rho, \theta)+ \frac{1}{\rho^2} U_{\theta \theta}=0, 0< \rho<1, 0< \theta< \pi$$
We are looking for solutions of the form $R(\rho) \Theta(\theta)$
$R(\rho) \Theta(0)=0 \Rightarrow \Theta(0)=0\\ R(\rho) \Theta(\pi)=0 \Rightarrow \Theta(\pi)=0$
$R''(\rho) \Theta(\theta)+ \frac{1}{\rho^2} R(\rho) \Theta''(\theta)=0\\ \frac{\Theta''(\theta)}{\Theta(\theta)}=-\rho^2 \frac{R''(\rho)}{R(\rho)}=-\lambda $
$\Theta''(\theta)+ \lambda \Theta(\theta)=0 \\ \Theta(0)=\Theta(\pi)=0$$\rho^2 R''(\rho)-\lambda R(\rho)=0$
$\lambda_k=k^2$
$\Theta_k(\theta)=\sin{k \theta}$
$\rho^2 R_k''(\rho)-k^2 R_k(\rho)=0$
We are looking for a solution of the form $R(\rho)=\rho^m \Rightarrow m(m-1) \rho^m-k^2 \rho^m=0$
$m^2-m-k^2=0$
$\Delta=1+4k^2$
$m=\frac{1 \pm \sqrt{1+4k^2}}{2}$
For $m>0$, the solution is unbounded.
$R_k(\rho)=\rho^{\frac{1+ \sqrt{1+4k^2}}{2}}$
$U_k(\rho, \theta)=\rho^{\frac{1+ \sqrt{1+4k^2}}{2}} \sin{k \theta}$
$U(\rho, \theta)=\sum c_k $We determine $c_k$$U(1, \theta)=\sum_{k=1}^{\theta} c_k \sin{k \theta}=\sin{\theta}$
$c_1=1\\c_k=0, k=2, \dots$
$$$$
Why is the problem in polar coordinates $$U_{\rho \rho}+\frac{1}{\rho^2}U_{\theta \theta}=0$$ and not $$U_{\rho \rho}+\frac{1}{\rho}U_{\rho}+\frac{1}{\rho^2}U_{\rho \rho}=0$$ ??