- #1
mathmari
Gold Member
MHB
- 5,049
- 7
Hey!
We have the following initial value problem:
$$x' = \frac{1}{2}(45 − x) + \frac{1}{4}(y − x) \\
y' = \frac{1}{4}(x − y) + \frac{1}{2}(35 − y) + \frac{1}{2}(z − y) + 20 \\
z' = \frac{1}{2}(y − z) + \frac{1}{2}(35 − z)$$
This can be written as follows:
$$\begin{pmatrix}
x\\
y\\
z
\end{pmatrix}'=\begin{pmatrix}
-\frac{3}{4} & \frac{1}{4} & 0 \\
\frac{1}{4} & -\frac{5}{4} & \frac{1}{2} \\
0 & \frac{1}{2} & -1
\end{pmatrix}\begin{pmatrix}
x\\
y\\
z
\end{pmatrix}+\begin{pmatrix}
\frac{45}{2}\\
\frac{75}{2}\\
\frac{35}{2}
\end{pmatrix}$$
right?? (Wondering)
To solve this problem do we have to solve first the homogengeous part and then the inhomogeneous one?? (Wondering)
We have the following initial value problem:
$$x' = \frac{1}{2}(45 − x) + \frac{1}{4}(y − x) \\
y' = \frac{1}{4}(x − y) + \frac{1}{2}(35 − y) + \frac{1}{2}(z − y) + 20 \\
z' = \frac{1}{2}(y − z) + \frac{1}{2}(35 − z)$$
This can be written as follows:
$$\begin{pmatrix}
x\\
y\\
z
\end{pmatrix}'=\begin{pmatrix}
-\frac{3}{4} & \frac{1}{4} & 0 \\
\frac{1}{4} & -\frac{5}{4} & \frac{1}{2} \\
0 & \frac{1}{2} & -1
\end{pmatrix}\begin{pmatrix}
x\\
y\\
z
\end{pmatrix}+\begin{pmatrix}
\frac{45}{2}\\
\frac{75}{2}\\
\frac{35}{2}
\end{pmatrix}$$
right?? (Wondering)
To solve this problem do we have to solve first the homogengeous part and then the inhomogeneous one?? (Wondering)
Last edited by a moderator: