- #1
VinnyCee
- 489
- 0
Homework Statement
Solve the initial value problem for y.
[tex]\frac{d^2y}{dx^2}\,=\,\frac{1}{a}\sqrt{1\,+\,\left(\frac{dy}{dx}\right)^2}[/tex]
[tex]y(0)\,=\,a[/tex] & [tex]y\prime(0)\,=\,0[/tex]
a is a non-zero constant.
Homework Equations
The calculus.
The Attempt at a Solution
[tex]y\prime\,=\,sinh\,x[/tex] [tex]\longrightarrow[/tex] [tex]dy\prime\,=\,cosh\,x\,dx[/tex]
[tex]1\,+\,sinh^2\,x\,=\,cosh^2\,x[/tex]
[tex]dy\prime\,=\,\frac{1}{a}\,\sqrt{cosh^2\,x}\,dx\,=\,\frac{cosh\,x}{a}\,dx[/tex]
[tex]\int dy\prime\,=\,\frac{1}{a}\,\int cosh\,x\,dx[/tex]
[tex]y\prime\,=\,\frac{1}{a}\,sinh\,x\,+\,C[/tex]
C = 0 from the initial condition [itex]y\prime(0)\,=\,0[/itex]
[tex]\int y\prime\,=\,\frac{1}{a}\,\int sinh\,x\,dx[/tex]
[tex]y\,=\,\frac{1}{a}\,cosh\,x\,+\,C[/tex]
[tex]\frac{1}{a}\,(1)\,+\,C\,=\,a[/tex]
[tex]C\,=\,a\,-\,\frac{1}{a}[/tex]
[tex]y\,=\,\frac{1}{a}\left(cosh\,x\,+\,a^2\,-\,1\right)[/tex]
That doesn’t match the answer that maple gives, what did I do wrong?
Last edited: