- #1
weetabixharry
- 111
- 0
I have three (N x 1) complex vectors, a, b and c.
I know the following conditions:
(1) a and b are orthonormal (but length of c is unknown)
(2) c lies in the same 2D plane as a and b
(3) aHc = x (purely real, known)
(4) bHc = iy (purely imaginary, unknown)
where (.)H denotes Hermitian (conjugate) transpose, i is the imaginary unit and x,y are real numbers.
Given that I know x, can I deduce y?
My hunch is that (without the "purely real/imaginary" statements), these conditions would define y up to an arbitrary complex phase, but the "purely real/imaginary" conditions allow the phase to be known too. However, my reasoning relies on there being some sense of "angle" between a and c and between b and c... such that these angles sum to 90° for the orthonormality condition (1). I don't know if this is valid.
I know the following conditions:
(1) a and b are orthonormal (but length of c is unknown)
(2) c lies in the same 2D plane as a and b
(3) aHc = x (purely real, known)
(4) bHc = iy (purely imaginary, unknown)
where (.)H denotes Hermitian (conjugate) transpose, i is the imaginary unit and x,y are real numbers.
Given that I know x, can I deduce y?
My hunch is that (without the "purely real/imaginary" statements), these conditions would define y up to an arbitrary complex phase, but the "purely real/imaginary" conditions allow the phase to be known too. However, my reasoning relies on there being some sense of "angle" between a and c and between b and c... such that these angles sum to 90° for the orthonormality condition (1). I don't know if this is valid.