MHB Integer Solutions to x^3+y^3+z^3=2: Proving Infinitely Many

  • Thread starter Thread starter lfdahl
  • Start date Start date
  • Tags Tags
    Integer
lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Prove, that the equation:$x^3+y^3+z^3 = 2$- has infinitely many integer solutions.
 
Mathematics news on Phys.org
lfdahl said:
Prove, that the equation:$x^3+y^3+z^3 = 2$- has infinitely many integer solutions.

we have $(p+1)^3-(p-1)^3 = 6p^2 + 2$

so if we chose q such that $q^3 = 6p^2$

then $(p+1)^3 - (p-1)^3 - q^3 = 2$

so the 3 numbers are $(p+1, - p + 1, - q )$ and $p = 6m^3=>q=6m^2$ giving solution

so we have solution set $x = 6m^3+1, y = - 6m^3 + 1, z = -6m^2$ is the set for integer m >0 is the solution set

so there are infinite solutions
 
kaliprasad said:
we have $(p+1)^3-(p-1)^3 = 6p^2 + 2$

so if we chose q such that $q^3 = 6p^2$

then $(p+1)^3 - (p-1)^3 - q^3 = 2$

so the 3 numbers are $(p+1, - p + 1, - q )$ and $p = 6m^3=>q=6m^2$ giving solution

so we have solution set $x = 6m^3+1, y = - 6m^3 + 1, z = -6m^2$ is the set for integer m >0 is the solution set

so there are infinite solutions

Very short and elegant, kaliprasad. Thankyou for your contribution!
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Back
Top