- #1
kingwinner
- 1,270
- 0
Q1) Let f(x,y)=3, if x E Q
f(x,y)=2y, if y E QC
Show that
1 3
∫ ∫ f(x,y)dydx exists
0 0
but the function f is not (Riemann) integrable over the rectangle [0,1]x[0,3]
I proved that the iterated integral exists and equal 9, but I am completely stuck with the second part (i.e. to prove that the function f is not integrable over the rectangle [0,1]x[0,3] ), how can I do it? Can someone please help me?
Thanks!
f(x,y)=2y, if y E QC
Show that
1 3
∫ ∫ f(x,y)dydx exists
0 0
but the function f is not (Riemann) integrable over the rectangle [0,1]x[0,3]
I proved that the iterated integral exists and equal 9, but I am completely stuck with the second part (i.e. to prove that the function f is not integrable over the rectangle [0,1]x[0,3] ), how can I do it? Can someone please help me?
Thanks!