- #1
Krizalid1
- 109
- 0
For any integrable function on $[0,1]$ prove that $\displaystyle \mathop {\lim }\limits_{n \to \infty } \frac{1}{n}\sum\limits_{k = 0}^{n - 1} {(n - k)\int_{\frac{k}{n}}^{\frac{{k + 1}}{n}} {f(x)\,dx} } = \int_0^1 {(1 - x)f(x)\,dx} .$