- #1
songoku
- 2,366
- 347
- Homework Statement
- Show that:
$$\sum_{r=1}^n \frac{1}{n} \left(1+\frac{r}{n} \right)^{-1}\approx \int_0^1 (1+x)^{-1} dx$$
- Relevant Equations
- Not sure
Writing down several terms of the summation and then doing some simplifying, I get:
$$\sum_{r=1}^n \frac{1}{n} \left(1+\frac{r}{n} \right)^{-1}= \frac{1}{n+1}+\frac{1}{n+2}+\frac{1}{n+3}+...\frac{1}{2n}$$
How to change this into integral form? Thanks
$$\sum_{r=1}^n \frac{1}{n} \left(1+\frac{r}{n} \right)^{-1}= \frac{1}{n+1}+\frac{1}{n+2}+\frac{1}{n+3}+...\frac{1}{2n}$$
How to change this into integral form? Thanks