- #1
LagrangeEuler
- 717
- 20
Integral
[tex]\int^{\pi}_0\sin^3xdx=\int^{\pi}_0\sin x \sin^2xdx=\int^{\pi}_0\sin x (1-\cos^2 x)dx=\frac{4 \pi}{3}[/tex]
Is it possible to write integral ##\int^{\pi}_0\sin^3xdx## in form of Beta function, or even Bessel function?
[tex]\int^{\pi}_0\sin^3xdx=\int^{\pi}_0\sin x \sin^2xdx=\int^{\pi}_0\sin x (1-\cos^2 x)dx=\frac{4 \pi}{3}[/tex]
Is it possible to write integral ##\int^{\pi}_0\sin^3xdx## in form of Beta function, or even Bessel function?