- #1
Ciaran
- 72
- 0
Hi there, I have a question I'm stuck on. It is:
Astronomers use a technique called stellar stereography to determine the density of stars in a star cluster
from the observed (two-dimensional) density that can be analysed from a photograph. Suppose that in
a spherical cluster of radius R the density of stars depends on ly on the distance r from the centre of
the cluster. If the perceived star density is given by y(s), where s is the observed planar distance from
the centre of the cluster, and x(r) is the actual density, it can be shown that
y(s) = integral from s to R of (2r x(r) dr)/ (r^2-s^2)^1/2 where x(r)=(1/2) ((R-r)^2)
I tried using the trig substitution r= s sec theta but haven't got far. I also am confused about how this substitution changes the limits. Can anyone please help?
Astronomers use a technique called stellar stereography to determine the density of stars in a star cluster
from the observed (two-dimensional) density that can be analysed from a photograph. Suppose that in
a spherical cluster of radius R the density of stars depends on ly on the distance r from the centre of
the cluster. If the perceived star density is given by y(s), where s is the observed planar distance from
the centre of the cluster, and x(r) is the actual density, it can be shown that
y(s) = integral from s to R of (2r x(r) dr)/ (r^2-s^2)^1/2 where x(r)=(1/2) ((R-r)^2)
I tried using the trig substitution r= s sec theta but haven't got far. I also am confused about how this substitution changes the limits. Can anyone please help?