MHB Integral Challenge #1: Prove 0 ≤ a < π/2

  • Thread starter Thread starter polygamma
  • Start date Start date
  • Tags Tags
    Challenge Integral
AI Thread Summary
The integral challenge requires proving that for the range 0 ≤ a < π/2, the integral of e^(-x cos a) multiplied by cos(x sin a) and cos(bx) from 0 to infinity equals (b² + 1) cos a divided by (b⁴ + 2b² cos(2a) + 1). Participants are encouraged to engage with the problem and provide solutions or insights. The challenge aims to stimulate discussion and problem-solving within the community. Future integral challenges will be numbered for easier reference. This discussion emphasizes the importance of mathematical proofs in understanding integral calculus.
polygamma
Messages
227
Reaction score
0
Show that for $ \displaystyle 0 \le a < \frac{\pi}{2}$,

$$ \int_{0}^{\infty} e^{-x \cos a} \cos(x \sin a) \cos (bx) \ dx = \frac{(b^{2}+1) \cos a}{b^{4}+2b^{2} \cos (2a) + 1 }$$When I post integral challenge problems in the future, I'll just number them.
 
Mathematics news on Phys.org
Random Variable said:
Show that for $ \displaystyle 0 \le a < \frac{\pi}{2}$,

$$ \int_{0}^{\infty} e^{-x \cos a} \cos(x \sin a) \cos (bx) \ dx = \frac{(b^{2}+1) \cos a}{b^{4}+2b^{2} \cos (2a) + 1 }$$When I post integral challenge problems in the future, I'll just number them.

\begin{align}
\int_{0}^{\infty} e^{-x \cos a} \cos(x \sin a) \cos (bx) \ dx &= \mathrm{Re}\int_{0}^{\infty} e^{-x \cos a} e^{ix \sin a } \cos (bx) \ dx\\ &= \mathrm{Re}\int_{0}^{\infty} e^{-x e^{-ia}} \cos (bx) \ dx \\& = \mathrm{Re}\frac {e^{-ia}}{e^{-2ia}+b^2}\\&= \mathrm{Re}\frac{\cos(a)-i\sin(a)}{\cos(2a)-i\sin(2a)+b^2}\\&= \mathrm{Re}\frac{(\cos(a)-i\sin(a))(\cos(2a)+b^2+i\sin(2a))}{(\cos(2a)+b^2)^2+\sin^2(2a)}\\&= \frac{\cos(2a)\cos(a)+\cos(a)b^2+\sin(2a)\sin(a)}{b^4+2b^2 \cos(2a)+1}\\&=\frac{(1+b^2)\cos(a)}{b^4+2b^2 \cos(2a)+1}
\end{align}

The convergence is justified by the Laplace transform. Since $$|\cos(bx)| \leq 1$$ so it is of an exponential order and we can take $$|\cos(bx)| \leq e^{0\, x}$$ so the value of $$c=0$$. Hence the integral converges to the value for $$\mathrm{Re}(e^{ia})>0$$ or $$\cos(a)>0$$ which clearly satisfy $$0 \leq a < \frac{\pi}{2}$$
 
Last edited by a moderator:
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Back
Top