- #1
SchroedingersLion
- 215
- 57
Greetings all.
I just got confused by the following.
Consider volume integral, for simplicity in 1D.
$$
V(A) = \int_{A} dz.
$$
If ##z## can be written as an invertible function of ##x##, i.e. ##z=f(x)##, we know the change of variables formula
$$
V(A)=\int_{A} dz= \int_{z^{-1}(A)} |z'(x)|dx.
$$
Intuitively, this is clear. What confused me now was the notion that the volume element transforms according to
$$
dz = |z'(x)|dx.
$$
If this equality holds, it should be allowed to write
$$
\int_{A} dz= \int_{A} |z'(x)|dx,
$$
which is obviously wrong. Why exactly is this not allowed?
I just got confused by the following.
Consider volume integral, for simplicity in 1D.
$$
V(A) = \int_{A} dz.
$$
If ##z## can be written as an invertible function of ##x##, i.e. ##z=f(x)##, we know the change of variables formula
$$
V(A)=\int_{A} dz= \int_{z^{-1}(A)} |z'(x)|dx.
$$
Intuitively, this is clear. What confused me now was the notion that the volume element transforms according to
$$
dz = |z'(x)|dx.
$$
If this equality holds, it should be allowed to write
$$
\int_{A} dz= \int_{A} |z'(x)|dx,
$$
which is obviously wrong. Why exactly is this not allowed?