- #1
evinda
Gold Member
MHB
- 3,836
- 0
Hello! (Wave)
The following holds for the ring $ \mathbb{Z}_p, p \in \mathbb{P}$:
The ring $ \mathbb{Z}_p $ is a principal ideal domain, especially an integral domain.
I try to understand the following proof:
Proof:
We will show that $ \mathbb{Z}_p $ is an integral domain.
The fact that $ \mathbb{Z}_p $ is a principal ideal domain can be concluded from the proposition "$\mathbb{Z}_p $ contains only the ideals $0$ and $p^n \mathbb{Z}_p $" for $n \in \mathbb{N}_0 $. It holds $ \bigcap_{n \in \mathbb{N}_0} p^n \mathbb{Z}_p=0$ and $ \mathbb{Z}_p / p^n \mathbb{Z}_p \cong \mathbb{Z} \ p^n \mathbb{Z}$.
Especially $ p \mathbb{Z}_p$ is the only maximal Ideal. "
Let $ x=(\overline{x_k}), y=(\overline{y_k}) \in \mathbb{Z}_p \setminus \{0\} $ and $ z=(\overline{z_k})=xy=(\overline{x_ky_k})$.
Since $ x,y \neq 0$ there are $ m,n \in \mathbb{N}_0 $ with $x_n \not\equiv 0 \mod{p^{n+1}}$ and $ y_m \not\equiv 0 \mod{p^{m+1}}$.
We set $ l:=n+m+1$. From $ x_l \equiv x_n \mod{p^{n+1}}$ and $ y_l \equiv y_m \mod{p^{m+1}}$ we deduce the existence of the partitions $ x_l=u \cdot p^{n'}$ and $ y_l=v \cdot p^{m'}$ with $gcd(u,p)=gcd(v,p)=1$, $ n' \leq n $ and $ m' \leq m$. Then since $ n'+m'<l $ we have that
$ z_l=uvp^{n'+m'} \not\equiv 0 \mod{p^{l+1}}$, and so $ z \neq 0$.Could you explain me step by step the above proof? (Thinking)
The following holds for the ring $ \mathbb{Z}_p, p \in \mathbb{P}$:
The ring $ \mathbb{Z}_p $ is a principal ideal domain, especially an integral domain.
I try to understand the following proof:
Proof:
We will show that $ \mathbb{Z}_p $ is an integral domain.
The fact that $ \mathbb{Z}_p $ is a principal ideal domain can be concluded from the proposition "$\mathbb{Z}_p $ contains only the ideals $0$ and $p^n \mathbb{Z}_p $" for $n \in \mathbb{N}_0 $. It holds $ \bigcap_{n \in \mathbb{N}_0} p^n \mathbb{Z}_p=0$ and $ \mathbb{Z}_p / p^n \mathbb{Z}_p \cong \mathbb{Z} \ p^n \mathbb{Z}$.
Especially $ p \mathbb{Z}_p$ is the only maximal Ideal. "
Let $ x=(\overline{x_k}), y=(\overline{y_k}) \in \mathbb{Z}_p \setminus \{0\} $ and $ z=(\overline{z_k})=xy=(\overline{x_ky_k})$.
Since $ x,y \neq 0$ there are $ m,n \in \mathbb{N}_0 $ with $x_n \not\equiv 0 \mod{p^{n+1}}$ and $ y_m \not\equiv 0 \mod{p^{m+1}}$.
We set $ l:=n+m+1$. From $ x_l \equiv x_n \mod{p^{n+1}}$ and $ y_l \equiv y_m \mod{p^{m+1}}$ we deduce the existence of the partitions $ x_l=u \cdot p^{n'}$ and $ y_l=v \cdot p^{m'}$ with $gcd(u,p)=gcd(v,p)=1$, $ n' \leq n $ and $ m' \leq m$. Then since $ n'+m'<l $ we have that
$ z_l=uvp^{n'+m'} \not\equiv 0 \mod{p^{l+1}}$, and so $ z \neq 0$.Could you explain me step by step the above proof? (Thinking)