Integral Evaluation: x^2+4 & 2+2sinx+cosx

  • MHB
  • Thread starter mathworker
  • Start date
  • Tags
    Integrals
In summary, an integral evaluation is a mathematical process used to find the exact value of a definite integral by finding the antiderivative of a function and evaluating it at specific limits. The main difference between a definite and indefinite integral is that the former has specific limits of integration while the latter does not. To evaluate the integral of x^2+4, the antiderivative must first be found and then the limits of integration can be substituted to find the exact value. The antiderivative is necessary for evaluating an integral because it represents the original function before integration. The constants in the antiderivative represent the family of functions with the same derivative and may affect the final answer when evaluating a definite integral.
  • #1
mathworker
111
0
Evaluate integrals:
\(\displaystyle 1) \int\frac{dx}{x^2\sqrt{x^2+4}}\)
\(\displaystyle 2) \int\frac{dx}{2+2\text{sin}x+\text{cos}x}\)
 
Last edited:
Mathematics news on Phys.org
  • #2
1.)
I would begin with the substitution:

\(\displaystyle x=2\tan(\theta)\,\therefore\,dx=2\sec^2(\theta)\)

Thus, we now have:

\(\displaystyle \frac{1}{4}\int\frac{\cos(\theta)}{\sin^2(\theta)}\,d\theta\)

Now, let:

\(\displaystyle u=\sin(\theta)\,\therefore\,du=\cos(\theta)\,d \theta\)

and we now have:

\(\displaystyle \frac{1}{4}\int u^{-2}\,du=-\frac{1}{4u}+C\)

Back-substitute for $u$:

\(\displaystyle -\frac{1}{4\sin(\theta)}+C\)

Back-substitute for $\theta$:

\(\displaystyle \int\frac{dx}{x^2\sqrt{x^2+4}}=-\frac{\sqrt{x^2+4}}{4x}+C\)
 
  • #3
2.)

I would begin by rewriting the denominator of the integrand:

\(\displaystyle 2+2\sin(x)+\cos(x)=2\left(\sin^2\left(\frac{x}{2} \right)+\cos^2\left(\frac{x}{2} \right) \right)+4\sin\left(\frac{x}{2} \right)\cos\left(\frac{x}{2} \right)+\cos^2\left(\frac{x}{2} \right)-\sin^2\left(\frac{x}{2} \right)=\)

\(\displaystyle \left(\sin\left(\frac{x}{2} \right)+\cos\left(\frac{x}{2} \right) \right)\left(\sin\left(\frac{x}{2} \right)+3\cos\left(\frac{x}{2} \right) \right)\)

Next, the numerator may be rewritten as:

\(\displaystyle 1=\left(\frac{1}{2}\cos\left(\frac{x}{2} \right)-\frac{1}{2}\sin\left(\frac{x}{2} \right) \right)\left(\sin\left(\frac{x}{2} \right)+3\cos\left(\frac{x}{2} \right) \right)-\left(\frac{1}{2}\cos\left(\frac{x}{2} \right)-\frac{3}{2}\sin\left(\frac{x}{2} \right) \right)\left(\sin\left(\frac{x}{2} \right)+\cos\left(\frac{x}{2} \right) \right)\)

Thus, the integrand may be rewritten as:

\(\displaystyle \frac{\frac{1}{2}\cos\left(\frac{x}{2} \right)-\frac{1}{2}\sin\left(\frac{x}{2} \right)}{\sin\left(\frac{x}{2} \right)+\cos\left(\frac{x}{2} \right)}-\frac{\frac{1}{2}\cos\left(\frac{x}{2} \right)-\frac{3}{2}\sin\left(\frac{x}{2} \right)}{\sin\left(\frac{x}{2} \right)+3\cos\left(\frac{x}{2} \right)}\)

Hence:

\(\displaystyle \int\frac{dx}{2+2\sin(x)+\cos(x)}=\ln\left|\frac{ \sin\left(\frac{x}{2} \right)+\cos\left(\frac{x}{2} \right)}{ \sin\left(\frac{x}{2} \right)+3\cos\left(\frac{x}{2} \right)} \right|+C\)
 

FAQ: Integral Evaluation: x^2+4 & 2+2sinx+cosx

What is an integral evaluation?

An integral evaluation is a mathematical process used to find the exact value of a definite integral. It involves finding the antiderivative of a function and then evaluating it at specific limits.

What is the difference between a definite and indefinite integral?

A definite integral has specific limits of integration, while an indefinite integral does not. This means that a definite integral will give a specific numerical value, while an indefinite integral will give a general function.

How do you evaluate the integral of x^2+4?

The integral of x^2+4 can be evaluated by first finding the antiderivative, which is (1/3)x^3+4x. Then, the limits of integration can be substituted into the antiderivative and the resulting expression can be simplified to find the exact value of the integral.

Why is it necessary to find the antiderivative before evaluating an integral?

The antiderivative is necessary because it represents the original function before it was integrated. By finding the antiderivative, we can determine the exact value of the integral at specific limits of integration.

What is the significance of the constants in the antiderivative?

The constants in the antiderivative represent the family of functions that have the same derivative. When evaluating a definite integral, these constants may cancel out or be included in the final answer depending on the limits of integration.

Back
Top