- #1
juantheron
- 247
- 1
Evaluation of $$\displaystyle \int\frac{5x^3+3x-1}{(x^3+3x+1)^3}dx$$$\bf{My\;Try::}$ Let $\displaystyle f(x) = \frac{ax+b}{(x^3+3x+1)^2}.$ Now Diff. both side w. r to $x\;,$ We Get$\displaystyle \Rightarrow f'(x) = \left\{\frac{(x^3+3x+1)^2\cdot a-2\cdot (x^3+3x+1)\cdot (3x^2+3)\cdot (ax+b)}{(x^3+3x+1)^4}\right\} = \frac{5x^3+3x-1}{(x^3+3x+1)^3}$So $\displaystyle \frac{(x^3+3x+1)\cdot a-6\cdot (x^2+1)\cdot (ax+b)}{(x^3+3x+1)^3} = \frac{5x^3+3x-1}{(x^3+3x+1)^3}.$So $\displaystyle \frac{-5ax^3+6bx^2-3ax+(a-6b)}{(x^3+3x+1)^3} = \frac{5x^3+3x-1}{(x^3+3x+1)^3}$.So We Get $a = -1$ and $b = 0.$ So We Get $\displaystyle \frac{d}{dx}\left[f(x)\right] = \frac{5x^3+3x-1}{(x^3+3x+1)^3}$So $\displaystyle \int\frac{5x^3+3x-1}{(x^3+3x+1)^3}dx = \int\frac{d}{dx}\left[f(x)\right]dx = f(x) = -\frac{x}{(x^3+3x+1)^2}+\mathcal{C}$But How we can Solve the above integral Directly.
Means Adding and subtracting in Numerator and taking something common
and Then Using Substitution Method , Thanks.
Means Adding and subtracting in Numerator and taking something common
and Then Using Substitution Method , Thanks.