- #1
alyafey22
Gold Member
MHB
- 1,561
- 1
Prove the following
\(\displaystyle \int^x_0 \frac{\log(1+t)\log^2(t)}{t}dt = -\log^2(x) \text{Li}_2(-x)+2 \log(x) \text{Li}_3(-x)-2 \text{Li}_4(-x)\)
\(\displaystyle \int^x_0 \frac{\log(1+t)\log^2(t)}{t}dt = -\log^2(x) \text{Li}_2(-x)+2 \log(x) \text{Li}_3(-x)-2 \text{Li}_4(-x)\)