- #1
Battlemage!
- 294
- 45
Homework Statement
[tex]\int_{}^{∞} \frac{1}{n^2 - 4} dn [/tex]
Homework Equations
I'm trying to do this a way that it isn't usually done. Normally this is done with partial fractions. I'm trying to do it by using trig substitution using sine, which requires some algebraic manipulation. For some reason, no matter what I do I end up with a different function from what various integral calculators give me.
The reason I'm doing this is this integral represents the infinite sum of the same function from n=3 to infinity, and I'm trying to show whether or not it converges. My hunch is that it converges. The reason I'm trying to do it this way is just for practice. But sadly I hit a wall. Somewhere I'm making a mistake I'm not seeing.
The Attempt at a Solution
I'll show every step so hopefully it will be easy to see where I mess up.
**I'm editing this to put numbers next to each step so it is easy to refer to. That is the only change I'm making**
[tex]\mbox{1. }\int_{}^{∞} \frac{1}{n^2 - 4} dn [/tex]
[tex]\mbox{2. }\int_{}^{∞} \frac{1}{-4(1 - \frac{n^2}{4})} dn [/tex]
[tex]\mbox{3. }-\frac{1}{4}\int_{}^{∞} \frac{1}{(1 - \frac{n^2}{4})} dn [/tex]
[tex]\mbox{4. }-\frac{1}{4}\int_{}^{∞} \frac{1}{(1 - [\frac{n}{2}]^2)} dn [/tex]
[tex]\mbox{5. }\mbox{Let u =} \frac{n}{2}. \mbox{Then 2du = dn} [/tex]
[tex]\mbox{6. }-\frac{1}{4}\int_{}^{∞} \frac{1}{(1 - u^2)} 2du [/tex]
[tex]\mbox{7. }-\frac{1}{2}\int_{}^{∞} \frac{1}{(1 - u^2)} du [/tex]
Now it's in the form I recognize for substituting with sine.
[tex]\mbox{8. }\mbox{Let u =} \sin{θ} \mbox{. Then du =} \cos{θ}dθ[/tex]
[tex]\mbox{9. }-\frac{1}{2}\int_{}^{∞} \frac{\cos{θ}}{(1 - \sin^2{θ})} dθ[/tex]
[tex]\mbox{10. }-\frac{1}{2}\int_{}^{∞} \frac{\cos{θ}}{(\cos^2{θ})} dθ[/tex]
[tex]\mbox{11. }-\frac{1}{2}\int_{}^{∞} \frac{1}{(\cos{θ})} dθ[/tex]
[tex]\mbox{12. }-\frac{1}{2}\int_{}^{∞} \sec{θ} dθ[/tex]
I just looked up the antiderivative of secant because it won't highlight the problem I'm having.
[tex]\mbox{13. }-\frac{1}{2}\ln{|\sec{θ}+\tan{θ}|} [/tex]
[tex]\mbox{14. }-\frac{1}{2}\ln{|\frac{1}{\cos{θ}}+\frac{\sin{θ}}{\cos{θ}}|} [/tex]
[tex]\mbox{15. }-\frac{1}{2}\ln{|\frac{1+\sin{θ}}{\cos{θ}}|} [/tex]
[tex]\mbox{16. }-\frac{1}{2}(\ln{|1+\sin{θ}|}-\ln{|\cos{θ}|}) [/tex]
[tex]\mbox{17. }\mbox{Noting that u =} \sin{θ} \mbox{ which means}\cos{θ}=\sqrt{1-u^2}[/tex]
[tex]\mbox{18. }-\frac{1}{2}(\ln{|1+u|}-\ln{|\sqrt{1-u^2}|})[/tex]
[tex]\mbox{19. }-\frac{1}{2}(\ln{|1+u|}-\frac{1}{2}\ln{|1-u^2|}) [/tex]
[tex]\mbox{20. }-\frac{1}{2}\ln{|1+u|} + \frac{1}{4}\ln{|1-u^2|}) [/tex]
[tex]\mbox{21. }\mbox{Noting that u =} \frac{n}{2} [/tex]
[tex]\mbox{22. }-\frac{1}{2}\ln{|1+\frac{n}{2}|} \mbox{ } +\mbox{ } \frac{1}{4}\ln{|1-\frac{n^2}{4}|} [/tex]
and the upper bound is infinity.
Now, here's the thing. This seems to be pretty close to the right answer, which according to integral calculators is:
[tex]\frac{1}{4}\ln{|n-2|} \mbox{ } -\mbox{ } \frac{1}{4}\ln{|n+2|} [/tex]I know this is not the optimal method to try to solve this, but hopefully someone will see my mistake. Thanks for reading through this. I know it's a lot.
Last edited: