- #1
Shobhit
- 22
- 0
Show that
$$\int_0^{\frac{\pi}{4}}\log\left( \sqrt{\sin^3 x}+\sqrt{\cos^3 x}\right) \text{d}x = \dfrac{G}{12}-\dfrac{5\pi}{16}\log{2}+\dfrac{\pi}{8}\log{\left(3-2\sqrt{2}\right)}+\frac{\pi}{3}\log{\left(2+\sqrt{3} \right)}$$
\(G\) denotes the Catalan's Constant.
$$\int_0^{\frac{\pi}{4}}\log\left( \sqrt{\sin^3 x}+\sqrt{\cos^3 x}\right) \text{d}x = \dfrac{G}{12}-\dfrac{5\pi}{16}\log{2}+\dfrac{\pi}{8}\log{\left(3-2\sqrt{2}\right)}+\frac{\pi}{3}\log{\left(2+\sqrt{3} \right)}$$
\(G\) denotes the Catalan's Constant.