Integral of sec(x): Solving with Substitution

  • MHB
  • Thread starter Mathick
  • Start date
  • Tags
    Integral
In summary, the conversation is about computing the integral of sec(x) using substitution. The first substitution is t=tan(x/2) and the following steps are shown. Then, there is mention of a second substitution y=pi/2-x and the use of the identity cos(pi/2-z)=sin(z). The suggestion is to use x=pi/2-y and dx=-dy and follow the same steps.
  • #1
Mathick
23
0
Hello! I need to compute the following integral: $ \int \sec\left({x}\right) \; dx $ using the substitution $ t=\tan\left({\frac{x}{2}}\right) $ what I did. HOWEVER, they ask to compute the same integral knowing that $ \int \csc\left({x}\right) \; dx = \log_{e}\left({\tan\left({\frac{x}{2}}\right)}\right) + C $ and using substitution $ y=\frac{\pi}{2} - x $. And I have a lot of problems with the second part of this task. I would be very grateful for some help or advice.
 
Physics news on Phys.org
  • #2
Use the identity $\cos\left(\frac{\pi}{2}-z\right)=\sin(z)$.
 
  • #3
Mathick said:
I need to compute the following integral: $\displaystyle \int \sec\left({x}\right) \; dx $ using the substitution $ z=\tan\left({\frac{x}{2}}\right) $

[tex] z = \tan\frac{x}{2} \quad\Rightarrow\quad x = 2\arctan z \quad\Rightarrow\quad dx = \frac{2\,dz}{1+z^2} \quad\Rightarrow\quad \cos x = \frac{1-z^2}{1+z^2} [/tex]

[tex]\displaystyle \int\sec x\,dx \;=\;\int \frac{1+z^2}{1-z^2}\,\frac{2\,dz}{1+z^2} \;=\; \int\frac{2\,dz}{1-z^2} \;=\;\int\left(\frac{1}{1-z} + \frac{1}{1+z}\right)dz[/tex]

. . . [tex]=\;-\ln(1-z) + \ln(1+z) +C \;=\;\ln\left|\frac{1+z}{1-z}\right| + C \;=\; \ln\left|\frac{1+\tan\frac{x}{2}}{1 - \tan\frac{x}{2}}\right| + C [/tex]

. . . [tex]=\;\ln\left|\frac{\cos\frac{x}{2} + \sin\frac{x}{2}}{\cos\frac{x}{2} - \sin\frac{x}{2}}\right| + C \;=\;\frac{1}{2}\ln\left|\frac{\cos\frac{x}{2} + \sin\frac{x}{2}}{\cos\frac{x}{2} - \sin\frac{x}{2}}\right|^2 + C[/tex]

. . . [tex]=\; \frac{1}{2}\ln\left|\frac{\sin^2\frac{x}{2} + 2\sin\frac{x}{2}\cos\frac{x}{2} + \cos^2\frac{2}{2}} {\cos^2\frac{x}{2} - 2\sin\frac{x}{2}\cos\frac{x}{2} + \sin^2\frac{x}{2}}\right| + C \;=\;\frac{1}{2}\ln \left|
\frac{1 + \sin x}{1-\sin x}\right| + C[/tex]

. . . [tex]=\; \frac{1}{2}\ln\left|\frac{1+\sin x}{1 - \sin x}\cdot\frac{1 + \sin x}{1 + \sin x}\right| + C \;=\;\frac{1}{2}\ln\left|\frac{(1+\sin x)^2}{1-\sin^2x}\right| + C
[/tex]

. . . [tex]=\; \frac{1}{2}\ln\left|\frac{(1+\sin x)^2}{\cos^2x}\right| + C \;=\;\ln\left|\frac{(1+\sin x)^2}{\cos^2x}\right|^{\frac{1}{2}} + C [/tex]

. . . [tex]=\;\ln\left|\frac{1+\sin x}{\cos x}\right| + C \;=\; \ln\left|\frac{1}{\cos x} + \frac{\sin x}{\cos x}\right| + C \;=\;\ln|\sec x + \tan x| + C [/tex]
 
  • #4
soroban said:

[tex] z = \tan\frac{x}{2} \quad\Rightarrow\quad x = 2\arctan z \quad\Rightarrow\quad dx = \frac{2\,dz}{1+z^2} \quad\Rightarrow\quad \cos x = \frac{1-z^2}{1+z^2} [/tex]

[tex]\displaystyle \int\sec x\,dx \;=\;\int \frac{1+z^2}{1-z^2}\,\frac{2\,dz}{1+z^2} \;=\; \int\frac{2\,dz}{1-z^2} \;=\;\int\left(\frac{1}{1-z} + \frac{1}{1+z}\right)dz[/tex]

. . . [tex]=\;-\ln(1-z) + \ln(1+z) +C \;=\;\ln\left|\frac{1+z}{1-z}\right| + C \;=\; \ln\left|\frac{1+\tan\frac{x}{2}}{1 - \tan\frac{x}{2}}\right| + C [/tex]

. . . [tex]=\;\ln\left|\frac{\cos\frac{x}{2} + \sin\frac{x}{2}}{\cos\frac{x}{2} - \sin\frac{x}{2}}\right| + C \;=\;\frac{1}{2}\ln\left|\frac{\cos\frac{x}{2} + \sin\frac{x}{2}}{\cos\frac{x}{2} - \sin\frac{x}{2}}\right|^2 + C[/tex]

. . . [tex]=\; \frac{1}{2}\ln\left|\frac{\sin^2\frac{x}{2} + 2\sin\frac{x}{2}\cos\frac{x}{2} + \cos^2\frac{2}{2}} {\cos^2\frac{x}{2} - 2\sin\frac{x}{2}\cos\frac{x}{2} + \sin^2\frac{x}{2}}\right| + C \;=\;\frac{1}{2}\ln \left|
\frac{1 + \sin x}{1-\sin x}\right| + C[/tex]

. . . [tex]=\; \frac{1}{2}\ln\left|\frac{1+\sin x}{1 - \sin x}\cdot\frac{1 + \sin x}{1 + \sin x}\right| + C \;=\;\frac{1}{2}\ln\left|\frac{(1+\sin x)^2}{1-\sin^2x}\right| + C
[/tex]

. . . [tex]=\; \frac{1}{2}\ln\left|\frac{(1+\sin x)^2}{\cos^2x}\right| + C \;=\;\ln\left|\frac{(1+\sin x)^2}{\cos^2x}\right|^{\frac{1}{2}} + C [/tex]

. . . [tex]=\;\ln\left|\frac{1+\sin x}{\cos x}\right| + C \;=\; \ln\left|\frac{1}{\cos x} + \frac{\sin x}{\cos x}\right| + C \;=\;\ln|\sec x + \tan x| + C [/tex]

I appreciate that but I didn't ask for that...
 
  • #5
How about substituting $x=\frac\pi 2-y$ and $dx=-dy$, and using greg1313's suggestion?
 

FAQ: Integral of sec(x): Solving with Substitution

What is the definition of the integral of sec(x)?

The integral of sec(x) is the inverse function of the derivative of sec(x), also known as the antiderivative. It represents the area under the curve of the sec(x) function on a given interval.

Why is substitution used to solve the integral of sec(x)?

Substitution is used to solve the integral of sec(x) because it allows us to simplify the function and make it easier to integrate. By substituting a new variable, we can convert the sec(x) function into a more manageable form.

What is the most common substitution used for solving the integral of sec(x)?

The most common substitution used for solving the integral of sec(x) is u = tan(x). This substitution is effective because it converts sec(x) into a simpler form of 1/cos(x), which can then be integrated using basic trigonometric identities.

What are the steps to solving the integral of sec(x) using substitution?

The steps to solving the integral of sec(x) using substitution are as follows:

  1. Identify the appropriate substitution, typically u = tan(x).
  2. Replace all instances of x with u in the integral.
  3. Find the new differential du by taking the derivative of u with respect to x.
  4. Substitute the new differential and the new variable into the integral.
  5. Simplify the integral and solve for the antiderivative.
  6. Replace the u variable with the original x variable to get the final solution.

Are there any other techniques for solving the integral of sec(x)?

Yes, there are other techniques for solving the integral of sec(x), such as using trigonometric identities, integration by parts, or partial fractions. However, substitution is the most commonly used technique and is generally the most efficient method for solving these types of integrals.

Similar threads

Back
Top