- #1
Tony1
- 17
- 0
Show that,
$$\int_{0}^{\pi/2}{\ln^2 (\tan^2 \theta)\over \pi^2+\ln^2 (\tan^2 \theta)}\mathrm d\theta=\color{red}{\pi\over 2}\color{green}(1-\ln 2)$$
$$\int_{0}^{\pi/2}{\ln^2 (\tan^2 \theta)\over \pi^2+\ln^2 (\tan^2 \theta)}\mathrm d\theta=\color{red}{\pi\over 2}\color{green}(1-\ln 2)$$