- #1
ariberth
- 8
- 0
Hallo math helpers ,
i am trying to understand how one could solve the following integrall:
$$\int_a^b \mathcal{N}(f(x_1,...,x_n,t),g(x_1,...,x_n,t)) dt$$, where $$\mathcal{N}$$ is the normal distribution, and $$f(x_1,...,x_n,t): \mathbb{R}^{n+1} \rightarrow \mathbb{R}$$, $$g(x_1,...,x_n,t): \mathbb{R}^{n+1} \rightarrow
\mathbb{R}$$. So the mean and variance changes with t . I read that $$\mathcal{N}(\mu_1,\sigma_1) + \mathcal{N}(\mu_2,\sigma_2) = \mathcal{N}(\mu_1 + \mu_2,\sigma_1+\sigma_2)$$ Does that mean that i just need to integrate f and g respectively?
i am trying to understand how one could solve the following integrall:
$$\int_a^b \mathcal{N}(f(x_1,...,x_n,t),g(x_1,...,x_n,t)) dt$$, where $$\mathcal{N}$$ is the normal distribution, and $$f(x_1,...,x_n,t): \mathbb{R}^{n+1} \rightarrow \mathbb{R}$$, $$g(x_1,...,x_n,t): \mathbb{R}^{n+1} \rightarrow
\mathbb{R}$$. So the mean and variance changes with t . I read that $$\mathcal{N}(\mu_1,\sigma_1) + \mathcal{N}(\mu_2,\sigma_2) = \mathcal{N}(\mu_1 + \mu_2,\sigma_1+\sigma_2)$$ Does that mean that i just need to integrate f and g respectively?