Integral Proofs: $|a| \le \frac{\pi}{2}$ and $|a| \le \pi$

In summary, for $|a| \le \frac{\pi}{2}$, the integral $\int_{0}^{\infty} \frac{\cos (\frac{\pi x}{2}) \cos(ax)}{1-x^{2}} \ dx$ evaluates to $\frac{\pi}{2} \cos a$ by using contour integration. The singularities at $x=1$ and $x=-1$ are removable and the integral can be simplified to $\frac{1}{4} \int_{-\infty}^{\infty} \frac{\cos[(a-\frac{\pi}{2})x] + \cos[(a+\frac{\pi}{2})x]}{1-x^{
  • #1
polygamma
229
0
Show that for $|a| \le \frac{\pi}{2}$,

$$\int_{0}^{\infty} \frac{\cos (\frac{\pi x}{2}) \cos(ax)}{1-x^{2}} \ dx = \frac{\pi}{2} \cos a$$Similarly, show that for $|a| \le \pi$,

$$ \int_{0}^{\infty} \frac{\sin (\pi x) \sin(ax)}{1-x^{2}} \ dx = \frac{\pi}{2} \sin a $$
 
Last edited:
Mathematics news on Phys.org
  • #2
These integrals come from a section in a PDE book on the Fourier integral representation.

But I'm going to use contour integration to evaluate the first one.First notice that the singularities at $x=1$ and $x=-1$ are removable.

$$ \int_{0}^{\infty} \frac{\cos (\frac{\pi x}{2}) \cos(ax)}{1-x^{2}} \ dx = \frac{1}{2} \int_{-\infty}^{\infty} \frac{\cos (\frac{\pi x}{2}) \cos(ax)}{1-x^{2}} \ dx = \frac{1}{4} \int_{-\infty}^{\infty} \frac{\cos[(a-\frac{\pi}{2})x] + \cos[(a+\frac{\pi}{2})x]}{1-x^{2}} \ dx$$

$$ = \frac{1}{4} \text{Re} \ \text{PV} \int_{-\infty}^{\infty} \frac{e^{i(a-\frac{\pi}{2})x} + e^{i(a+\frac{\pi}{2})x}}{1-x^{2}} \ dx = \frac{1}{4} \text{Re} \ \text{PV} \int_{-\infty}^{\infty} \frac{e^{i(a-\frac{\pi}{2})x}}{1-x^{2}} \ dx + \frac{1}{4} \text{Re} \ \text{PV} \int_{-\infty}^{\infty} \frac{e^{i(a+\frac{\pi}{2})x}}{1-x^{2}} \ dx $$

If $|a| < \frac{\pi}{2}$,

$$ \text{PV} \int_{-\infty}^{\infty} \frac{e^{i(a-\frac{\pi}{2})x}}{1-x^{2}} \ dx = - i \pi \text{Res}\Big[ \frac{e^{i(a-\frac{\pi}{2})x}}{1-x^{2}}, -1 \Big] - i \pi \text{Res}\Big[ \frac{e^{i(a-\frac{\pi}{2})x}}{1-x^{2}} ,1 \Big]$$

$$ = \frac{i \pi}{2} \Big(-e^{-i(a- \frac{\pi}{2})} + e^{i(a- \frac{\pi}{2})} \Big) = - \pi \sin \Big(a - \frac{\pi}{2} \Big) = \pi \cos a$$

where I have integrated around an indented semicircle in the lower half plane.And

$$ \text{PV} \int_{-\infty}^{\infty} \frac{e^{i(a+\frac{\pi}{2})x}}{1-x^{2}} \ dx = i \pi \text{Res}\Big[ \frac{e^{i(a+\frac{\pi}{2})x}}{1-x^{2}}, -1 \Big] + i \pi \text{Res}\Big[ \frac{e^{i(a+\frac{\pi}{2})x}}{1-x^{2}} ,1 \Big] $$$$= \frac{i \pi}{2} \Big( e^{-i(a+ \frac{\pi}{2})} - e^{i(a+ \frac{\pi}{2})} \Big) = \pi \sin\Big(a + \frac{\pi}{2} \Big) = \pi \cos a$$

where I have integrated around an indented semicircle in the upper half plane.So if $|a| \le \frac{\pi}{2}$,

$$\int_{0}^{\infty} \frac{\cos (\frac{\pi x}{2}) \cos(ax)}{1-x^{2}} \ dx = \frac{1}{4} \text{Re} \ (2 \pi \cos a) = \frac{\pi}{2} \cos a $$For $|a| > \frac{\pi}{2}$ the two integrals will cancel each other.
 

FAQ: Integral Proofs: $|a| \le \frac{\pi}{2}$ and $|a| \le \pi$

What is an integral proof?

An integral proof is a mathematical technique used to prove the validity of an equation or inequality by using the properties of integrals.

How do you use integral proofs to show $|a| \le \frac{\pi}{2}$?

To show $|a| \le \frac{\pi}{2}$ using an integral proof, we would first express $|a|$ as an integral and then use the properties of integrals to manipulate the expression until we reach the desired inequality.

Why is $|a| \le \frac{\pi}{2}$ important in integral proofs?

The inequality $|a| \le \frac{\pi}{2}$ is important in integral proofs because it allows us to simplify complicated integrals and make them easier to evaluate.

Can $|a| \le \frac{\pi}{2}$ be proven using other methods besides integral proofs?

Yes, $|a| \le \frac{\pi}{2}$ can be proven using other methods such as geometric proofs or trigonometric identities. However, integral proofs are often the most efficient and elegant way to prove this inequality.

How does the inequality $|a| \le \pi$ relate to $|a| \le \frac{\pi}{2}$ in integral proofs?

The inequality $|a| \le \pi$ is a stronger version of $|a| \le \frac{\pi}{2}$ and is often used in conjunction with it in integral proofs. This is because $|a| \le \pi$ allows for a wider range of values for $a$, making it more useful in certain situations.

Similar threads

Back
Top