- #1
hobomath
- 4
- 0
This is my first time tackling this kind of problem.
1. Let $Q$ be the percentage of what he remembers.
2. Let $t$ be the time in weeks.
3. Initial condition 1: $Q=0.95 $ and $t=0$
5. Initial condition 2: $Q=0.80 $ and $t=1$
Now I'm stuck about finding the rate. From what I understand from the text:
$$ dQ-0.5 = kQ $$After that, I'm not sure what I have to do. I imagine I'd have to find the value of the constant $k$ by plugging the initial conditions 1 and/or 2. But I don't see where I should put the time (t) anywhere?
I am so confused with this problem... so any hints or help to solve is much appreciated.
The rate in which a student forgets about what he studies is proportional to the difference of the percentage of what he remembers right now and the percentage of minimal retention of that student. Student A has a rate of minimal retention of 50%. A the end of a class, student A remembers 95% of his studies. One week later, he remembers 80% of his studies of that class.
The exam is in 3 weeks after that class. If student A stops studying, what is the percentage of what he remembers?
1. Let $Q$ be the percentage of what he remembers.
2. Let $t$ be the time in weeks.
3. Initial condition 1: $Q=0.95 $ and $t=0$
5. Initial condition 2: $Q=0.80 $ and $t=1$
Now I'm stuck about finding the rate. From what I understand from the text:
$$ dQ-0.5 = kQ $$After that, I'm not sure what I have to do. I imagine I'd have to find the value of the constant $k$ by plugging the initial conditions 1 and/or 2. But I don't see where I should put the time (t) anywhere?
I am so confused with this problem... so any hints or help to solve is much appreciated.