- #1
Fermat1
- 187
- 0
Let $S$ be a commutative ring and $R$ a sub-ring. Let $J$ be an ideal of $S$ and $I$ be the intersection of $J$ and $R$. Show that if $S$ is integral over $R$, then $S/J$ is integral over $R/I$.
My attempt: Let $x+J$ be in $S/J$. Then $x$ is integral over $R$ so there is a monic polynomial $m$ in $R[X]$ with $m(x)=0$, say $m(X)=X^n+r_{n-1}x^{n-1}+...+r_{0}$. Then $(m+I)[X]$ is monic and $(m+I)(x+J)$=$x^n+IJ+r_{n-1}x^{n-1}+IJ+...+r_{0}+I$. Why is this zero?
My attempt: Let $x+J$ be in $S/J$. Then $x$ is integral over $R$ so there is a monic polynomial $m$ in $R[X]$ with $m(x)=0$, say $m(X)=X^n+r_{n-1}x^{n-1}+...+r_{0}$. Then $(m+I)[X]$ is monic and $(m+I)(x+J)$=$x^n+IJ+r_{n-1}x^{n-1}+IJ+...+r_{0}+I$. Why is this zero?