- #1
roam
- 1,271
- 12
Homework Statement
I need to simplify the following integral
$$f(r, \theta, z) =\frac{1}{j\lambda z} e^{jkr^2/2z} \int^{d/2}_0 \int^{2\pi}_0 \exp \left( -\frac{j2\pi r_0 r}{z\lambda} \cos \theta_0 \right) r_0 \ d\theta_0 dr_0 \tag{1}$$
Using the following integrals:
$$\int^{2\pi}_0 \cos (z \cos \theta) d \theta = 2 \pi J_0 (z) \tag{i}$$
$$\int^{2\pi}_0 \sin (z \cos \theta) d \theta =0 \tag{ii}$$
$$\int^{z}_0 z J_0 (u) du=zJ_1 (z) \tag{iii}$$
P. S. This integral is meant to give the radial intensity profile of the diffraction pattern of the circular aperture (##|f(r, \theta, z)|^2 ##). I am required to express this as a simple function of a ##J_1(.)^2## function. Here ##J_n (z)## denotes the Bessel function of order ##n##.
Homework Equations
The Attempt at a Solution
Leaving aside the constant ##A=\frac{1}{j\lambda z} e^{jkr^2/2z}## in the front, the integral becomes:
$$\int^{d/2}_0 r_0 \int^{2\pi}_0 \exp \left( -\frac{j2\pi r_0 r}{z\lambda} \cos \theta_0 \right) \ d\theta_0 dr_0 $$
$$=\int^{d/2}_0 r_0 \int^{2\pi}_0 \cos \left( -\frac{j2\pi r_0 r}{z\lambda} \cos \theta_0 \right) + j \sin \left( -\frac{j2\pi r_0 r}{z\lambda} \cos \theta_0 \right) \ d\theta_0 dr_0 $$
Using (i) and (ii):
$$=\int^{d/2}_0 r_0 2 \pi J_0 \left( \frac{j2\pi r_0 r}{z\lambda} \right) dr_0 $$
Here I had to use a substitution ##u=j2\pi r r_0/z \lambda##, and ##dr_0 = \frac{z \lambda}{j2\pi r} du##:
$$\left( \frac{z\lambda}{j 2 \pi r} \right)^2 2 \pi \int^{\frac{z \lambda d}{4 j \pi r}}_0 u J_0 (u) du$$
Using (iii) this becomes:
$$\therefore f(r, \theta, z) = A. \frac{d}{r} \left( \frac{z \lambda}{2 \pi r} \right)^2 J_1 \left( \frac{z \lambda d}{4 j \pi r} \right)$$
However, in textbooks, this intensity distribution (known as 'Airy pattern') is given by:
$$|f(r, \theta, z)|^2 = \left( \frac{\pi d^2}{4 \lambda^2} \right)^2 \left[ \frac{2 J_1 \left( \frac{d \pi r}{z \lambda} \right)}{\frac{\pi d r}{\lambda z}} \right].$$
So, why is my answer so different? What is the mistake?
Any suggestions would be greatly appreciated.