- #1
karush
Gold Member
MHB
- 3,269
- 5
Evaluate integral by using $x=3\sin{\theta}$
$\int{x^3\sqrt{9-x^2}}\ dx$
substituting
$\int{27\sin^3{\theta}}\sqrt{9-9\sin^2{\theta}}\Rightarrow
81\int\sin^3\theta\cos\theta\ dx$
since the power of sine is odd then
$81\int\sin^2{\theta}\cos{\theta}\sin{\theta}\ dx$
$81\int\left(1-\cos^2{\theta}\right)\cos{\theta}\sin{\theta}\ dx$
hope ok so far but next steps?
$\int{x^3\sqrt{9-x^2}}\ dx$
substituting
$\int{27\sin^3{\theta}}\sqrt{9-9\sin^2{\theta}}\Rightarrow
81\int\sin^3\theta\cos\theta\ dx$
since the power of sine is odd then
$81\int\sin^2{\theta}\cos{\theta}\sin{\theta}\ dx$
$81\int\left(1-\cos^2{\theta}\right)\cos{\theta}\sin{\theta}\ dx$
hope ok so far but next steps?