- #1
tmt1
- 234
- 0
I have this integral:
$$\int_{}^{}\frac{1}{x^2 - 9} \,dx$$
I believe I can use trig substitution with this so I can set $x = 3 sec\theta$
Evaluating this, I get
$$ln|\csc\left({\theta}\right) - \cot\left({\theta}\right)| + C$$
Since $x^2 - 9 = 9sec^2\theta - 9$, then $\frac{x^2 - 9}{3} = tan^2\theta$ and $tan\theta = \sqrt{\frac{x^2 - 9}{3}}$.
Then we know $csc\theta = \frac{sec\theta}{tan\theta}$ and in this context $sec\theta = x / 3$, so $csc\theta = \frac{x / 3}{ \sqrt{\frac{x^2 - 9}{3}}}$.
Thus the answer is
$$ln| \frac{x / 3}{ \sqrt{\frac{x^2 - 9}{3}}} - \sqrt{\frac{3}{x^2 - 9}}| + C$$
Is this correct?
$$\int_{}^{}\frac{1}{x^2 - 9} \,dx$$
I believe I can use trig substitution with this so I can set $x = 3 sec\theta$
Evaluating this, I get
$$ln|\csc\left({\theta}\right) - \cot\left({\theta}\right)| + C$$
Since $x^2 - 9 = 9sec^2\theta - 9$, then $\frac{x^2 - 9}{3} = tan^2\theta$ and $tan\theta = \sqrt{\frac{x^2 - 9}{3}}$.
Then we know $csc\theta = \frac{sec\theta}{tan\theta}$ and in this context $sec\theta = x / 3$, so $csc\theta = \frac{x / 3}{ \sqrt{\frac{x^2 - 9}{3}}}$.
Thus the answer is
$$ln| \frac{x / 3}{ \sqrt{\frac{x^2 - 9}{3}}} - \sqrt{\frac{3}{x^2 - 9}}| + C$$
Is this correct?
Last edited: