- #1
tmt1
- 234
- 0
I have
$$\int_{}^{} \frac{1}{\sqrt{1 - x^2}} \,dx$$
I can let $x = \sin\left({\theta}\right)$ then $dx = cos(\theta) d\theta$
then:
$$\int_{}^{} \frac{cos(\theta) d\theta}{\sqrt{1 - (\sin\left({\theta}\right))^2}}$$
Using the trig identity $1 - sin^2\theta = cos^2\theta$, I can simplify this to:
$$\int_{}^{} \frac{d\theta}{cos\theta}$$
so $ln|cos\theta| + C$ should be the answer.
Since $cosx = \sqrt{1 - sin^2 x}$, then it would be $ln|\sqrt{1 - sin^2 \theta}| + C$
I can substitute back in $x = \sin\left({\theta}\right)$, so
$$ln|\sqrt{1 - x^2}| + C$$
However, this is not the answer I have in the solutions.
$$\int_{}^{} \frac{1}{\sqrt{1 - x^2}} \,dx$$
I can let $x = \sin\left({\theta}\right)$ then $dx = cos(\theta) d\theta$
then:
$$\int_{}^{} \frac{cos(\theta) d\theta}{\sqrt{1 - (\sin\left({\theta}\right))^2}}$$
Using the trig identity $1 - sin^2\theta = cos^2\theta$, I can simplify this to:
$$\int_{}^{} \frac{d\theta}{cos\theta}$$
so $ln|cos\theta| + C$ should be the answer.
Since $cosx = \sqrt{1 - sin^2 x}$, then it would be $ln|\sqrt{1 - sin^2 \theta}| + C$
I can substitute back in $x = \sin\left({\theta}\right)$, so
$$ln|\sqrt{1 - x^2}| + C$$
However, this is not the answer I have in the solutions.