- #1
jouvelot
- 53
- 2
Hi,
I stumbled upon an identity when studying tensor perturbations in cosmology. The formula states that
$$
\int d^2\hat{p} f(\hat{p}.\hat{q})\hat{p}_i \hat{p}_k e_{jk}(\hat{q}) = e_{ij}(\hat{q})/2 \int d^2\hat{p} f(\hat{p}.\hat{q})(1-(\hat{p}.\hat{q})^2),
$$ where ##e_{ij}(\hat{q})## is any symmetric traceless matrix-valued function of ##\hat{q}## with ##\hat{q}_i e_{ij}(\hat{q}) = 0##, ##\hat{p}## is the unit vector parallel to ##p## and ##f## any function of the scalar product ##\hat{p}.\hat{q}##.
Is there a simpler way to get this formula than to proceed by using cumbersome spherical or euclidian coordinate expressions? I submitted this question on the Math forum on PF, but got no suggestions.
Thanks in advance.
Bye,
Pierre
I stumbled upon an identity when studying tensor perturbations in cosmology. The formula states that
$$
\int d^2\hat{p} f(\hat{p}.\hat{q})\hat{p}_i \hat{p}_k e_{jk}(\hat{q}) = e_{ij}(\hat{q})/2 \int d^2\hat{p} f(\hat{p}.\hat{q})(1-(\hat{p}.\hat{q})^2),
$$ where ##e_{ij}(\hat{q})## is any symmetric traceless matrix-valued function of ##\hat{q}## with ##\hat{q}_i e_{ij}(\hat{q}) = 0##, ##\hat{p}## is the unit vector parallel to ##p## and ##f## any function of the scalar product ##\hat{p}.\hat{q}##.
Is there a simpler way to get this formula than to proceed by using cumbersome spherical or euclidian coordinate expressions? I submitted this question on the Math forum on PF, but got no suggestions.
Thanks in advance.
Bye,
Pierre