Integrate source terms for test EM field in Kerr spacetime

In summary, the study focuses on the integration of source terms for electromagnetic (EM) fields within the context of Kerr spacetime, which describes the geometry around rotating black holes. The research investigates the behavior of EM fields in this complex spacetime, aiming to enhance the understanding of how these fields interact with gravitational effects. By employing mathematical techniques to incorporate the source terms, the study provides insights into the implications for astrophysical processes and the behavior of charged particles in strong gravitational fields.
  • #1
Nitacii
4
0
Homework Statement
Calculate the source term ##^2J_{lm}## while knowing by integrating the known quantities.
Relevant Equations
$$ ^2J_{lm}(r) = \int_0^{2\pi} \int_0^\pi \frac{(r- i a \cos \theta)^2}{(r_+ - r_-)^2} \Sigma \ J_2 \;{}_{-1}\overline{Y}_{lm} \sin \theta d\theta d \phi$$
Hello, the Homework Statement is quite long, since it includes a lot of equations so I will rather post the as images as to prevent mistypes.

We need to find the integral
1696784403607.png

where
1696784412160.png

with

$$
J_m =(\sqrt{2}(r−ia\cos⁡θ))^{−1} i(r^2+a^2)\sin⁡(θ)j,
$$

$$
J_n = - \frac{a \Delta}{ 2 \Sigma} \sin(\theta )^2 j,
$$

$$
j = C \delta(r-r_0) \delta(\theta-\pi /2),
$$

where δ is the dirac delta function and with
$$
\Delta = r^2 - 2 M r + a^2
$$

$$
\Sigma = r^2 + a^2 \cos(\theta)^2
$$Finally ##(r_+,r_-,r_0,C,a,M)## are constant and ## {}_{-1}\overline{Y}_{l,m} = {}_{-1}\overline{Y}_{l,m}(\theta,\phi) ## are the Spin-Weighted Spherical harmonics.

We were also given the article Stationary electromagnetic fields around black holes. II. I understand that not everyone has access to it. But I've provided everything necessary here.

Since the calculation are very long I've prepared a Mathematica notebook. Which I've attached as pdf and is also (with working Mathematica notebook) at https://github.com/Zlabekma/homework.git).

Anyway, I don't finish the calculation there because my integrated source term is at least cubic in the variable ##r## but the one in the article is only quadratic in ##r##.
To be more specific in the article they state that ##{}^2J_{lm} \propto \Delta##
Comments on how to improve this post are very much appreciated. Thank you.
 

Attachments

  • HomeworkIntegration.pdf
    86 KB · Views: 62
Last edited:
Physics news on Phys.org
  • #2
For clarity I finished the calculation using rules for Spin-Weighted Spherical harmonics and corrected a typo. I've modified the notebook and the pdf. But the problem of course remains.
 

Attachments

  • HomeworkIntegration.pdf
    96.6 KB · Views: 89
Last edited:

Similar threads

Back
Top