Integrating $-3x\cos{4x}$: Step-by-Step

  • MHB
  • Thread starter karush
  • Start date
In summary, the integral $I = \int -3x \cos{4x} \, dx$ can be evaluated using the $uv$ substitution method, resulting in $I = \frac{3}{4}x\sin{4x} + \frac{1}{16}\cos{4x} + C$ after a few steps involving integrating by parts and using basic trigonometric identities. An alternative method involving differentiation and integration can also be used to obtain the same result.
  • #1
karush
Gold Member
MHB
3,269
5
$\tiny{9.1}$
\begin{align*} \displaystyle
I&=\int -3x \cos{4x} \, dx = -3\int x \cos{4x} \, dx\\
\textit{uv substitution}\\
u&=x\therefore du=dx\\
dv&=\cos{4x} \, dx\therefore v=-\frac{\sin{4x}}{4}\\
\textit{now we have}\\
I&=3\left[\frac{x\sin{4x}}{4}
+\int\frac{\sin{4x}}{4} \, dx\right]\\
\textit{and finally}\\
I&=\frac{3}{4} x\sin{4x} +\frac{1}{16}\cos{4x}+C
\end{align*}

think this is ok but probably suggestions
 
Last edited:
Physics news on Phys.org
  • #2
Let's check your result using a different method (one you'll soon learn)...let:

\(\displaystyle \d{I}{x}=-3x\cos(4x)\)

We know the homogeneous solution will be a constant, $I_h=c_1$.

Using the method of undetermined coefficients, we will expect a particular solution of the form:

\(\displaystyle I_p=(Ax+B)\cos(4x)+(Cx+D)\sin(4x)\)

Differentiating w.r.t $x$, we obtain:

\(\displaystyle \d{I}{x}=(Ax+B)(-4\sin(4x))+A\cos(4x)+(Cx+D)(4\cos(4x))+C\sin(4x)=(4Cx+4D+A)\cos(4x)+(-4ax-4B+C)\sin(x)\)

Substituting that into our ODE, we find:

\(\displaystyle (4Cx+4D+A)\cos(4x)+(-4Ax-4B+C)\sin(x)=(-3x+0)\cos(4x)+(0x+0)\sin(4x)\)

Equating coefficients, there results:

\(\displaystyle 4C=-3\)

\(\displaystyle 4D+A=0\)

\(\displaystyle -4A=0\)

\(\displaystyle -4B+C=0\)

From this, we obtain:

\(\displaystyle (A,B,C,D)=\left(0,-\frac{3}{16},-\frac{3}{4},0\right)\)

Hence:

\(\displaystyle I_p=\left(0x-\frac{3}{16}\right)\cos(4x)+\left(-\frac{3}{4}x+0\right)\sin(4x)=-\frac{3}{16}\left(4x\sin(4x)+\cos(4x)\right)\)

So, by the principle of superposition, the general solution is:

\(\displaystyle I=I_h+I_p=-\frac{3}{16}\left(4x\sin(4x)+\cos(4x)\right)+c_1\)

It looks like you made only a couple of very minor slips. Can you spot them?
 
  • #3
left $dx$ off

always get lost with signs

that was an interesting method

im going to do another IBP

I took a test thursday but ran out of time half way!
to much time figuring next step
 
  • #4
karush said:
$\tiny{9.1}$
\begin{align*} \displaystyle
I&=\int -3x \cos{4x} \, dx = -3\int x \cos{4x} \, dx\\
\textit{uv substitution}\\
u&=x\therefore du=dx\\
dv&=\cos{4x} \, dx\therefore v=-\frac{\sin{4x}}{4}\\
\textit{now we have}\\
I&=3\left[\frac{x\sin{4x}}{4}
+\int\frac{\sin{4x}}{4} \, dx\right]\\
\textit{and finally}\\
I&=\frac{3}{4} x\sin{4x} +\frac{1}{16}\cos{4x}+C
\end{align*}

think this is ok but probably suggestions

Another option - start by differentiating your function twice

$\displaystyle \begin{align*} \frac{\mathrm{d}^2}{\mathrm{d}x^2}\,\left[ -3\,x\cos{ \left( 4\,x \right) } \right] &= \frac{\mathrm{d}}{\mathrm{d}x} \,\left[ 12\,x\sin{ \left( 4\,x \right) } - 3 \cos{ \left( 4\,x \right) } \right] \\ &= 48\,x\cos{ \left( 4\,x \right) } + 12\sin{ \left( 4\,x \right) } + 12 \cos{ \left( 4\,x \right) } \end{align*}$

and since every derivative equation can be written in an equivalent form as an integral, as $\displaystyle \begin{align*} \frac{\mathrm{d}}{\mathrm{d}x} \,\left[ 12\,x\sin{ \left( 4\,x \right) } - 3\cos{ \left( 4\,x \right) } \right] &= 48\,x\cos{ \left( 4\,x \right) } + 12\sin{ \left( 4\,x \right) } + 12\cos{ \left( 4\,x \right) } \end{align*}$ that means

$\displaystyle \begin{align*} \int{ \left[ 48\,x\cos{ \left( 4\,x \right) } + 12\sin{ \left( 4\,x \right) } + 12\cos{ \left( 4\,x \right) } \right] \,\mathrm{d}x } &= 12\,x\sin{ \left( 4\,x \right) } - 3\cos{ \left( 4\,x \right) } + C_1 \\ \int{ 48\cos{ \left( 4\,x \right) } \,\mathrm{d}x} + \int{12\sin{ \left( 4\,x \right) } \,\mathrm{d}x} + \int{ 12\cos{ \left( 4\,x \right) } \,\mathrm{d}x} &= 12\,x\sin{ \left( 4\,x \right) } - 3\cos{ \left( 4\,x \right) } + C_1 \\ \int{48\,x\cos{ \left( 4\,x \right) } \,\mathrm{d}x} - 3\cos{ \left( 4\,x \right) } + C_2 + 3\sin{ \left( 4\,x \right) } + C_3 &= 12\,x \sin{ \left( 4\,x \right) } - 3\cos{ \left( 4\,x \right) } + C_1 \\ \int{ 48\,x\cos{ \left( 4\,x \right) }\,\mathrm{d}x} &= 12\,x\sin{ \left( 4\,x \right) } - 3\cos{ \left( 4\,x \right) } + 3\cos{ \left( 4\,x \right) } - 3\sin{ \left( 4\,x \right) } + C_1 - C_2 - C_3 \\ -16 \int{ -3\,x\cos{ \left( 4\,x \right) } \,\mathrm{d}x } &= 12\,x\sin{ \left( 4\,x \right) } - 3\sin{ \left( 4\,x \right) } + C_1 - C_2 - C_3 \\ \int{ -3\,x\cos{ \left( 4\,x \right) } \,\mathrm{d}x} &= \frac{3}{16}\,\sin{ \left( 4\,x \right) } - \frac{3}{4}\,x\sin{ \left( 4\,x \right) } + C \textrm{ where } C = -\frac{1}{16}\,\left( C_1 - C_2 - C_3 \right) \end{align*}$
 
  • #5
lots of steps!
 
  • #6
karush said:
$\tiny{9.1}$
\begin{align*} \displaystyle
I&=\int -3x \cos{4x} \, dx = -3\int x \cos{4x} \, dx\\
\textit{uv substitution}\\
u&=x\therefore du=dx\\
dv&=\cos{4x} \, dx\therefore v=-\frac{\sin{4x}}{4}\\
\textit{now we have}\\
I&=3\left[\frac{x\sin{4x}}{4}
+\int\frac{\sin{4x}}{4} \, dx\right]\\
\textit{and finally}\\
I&=\frac{3}{4} x\sin{4x} +\frac{1}{16}\cos{4x}+C
\end{align*}

think this is ok but probably suggestions

karush said:
lots of steps!

Less steps... and no mistakes with minus signs with a couple of sub steps... (Thinking)
$$I = \int -3x \cos{4x} \, dx
= -\frac 34 \int x\, d(\sin{4x})
\overset{\boxed{\int udv =uv -\int vdu}}= -\frac 34 \left(x\sin 4x - \int \sin 4x\,dx\right) \\
= -\frac 34 \left(x\sin 4x + \frac 14 \cos 4x\right) + C
= -\frac 34 x\sin 4x - \frac 3{16} \cos 4x + C
$$
 

FAQ: Integrating $-3x\cos{4x}$: Step-by-Step

What does it mean to integrate $-3x\cos{4x}$?

Integrating $-3x\cos{4x}$ means finding the antiderivative or the "reverse process" of differentiation for the given expression. This will result in a function that, when differentiated, will give the original expression.

Why is it important to integrate $-3x\cos{4x}$?

Integrating is an important mathematical concept used in various fields such as physics, engineering, and economics. It allows us to find the total area under a curve, which has many practical applications such as finding displacement, velocity, and acceleration.

What is the step-by-step process for integrating $-3x\cos{4x}$?

The first step is to use the product rule to rewrite $-3x\cos{4x}$ as a product of two functions, $f(x)$ and $g(x)$. Then, apply the integration formula for the product of two functions. Next, use substitution to simplify the integral. Finally, solve the integral using techniques such as u-substitution or integration by parts.

What are some tips for integrating $-3x\cos{4x}$?

One helpful tip is to always check your answer by differentiating it to see if you get the original expression. Another tip is to use trigonometric identities to simplify the integral, such as $\cos{2x} = 1 - 2\sin^2{x}$ or $\sin{2x} = 2\sin{x}\cos{x}$.

Can you provide an example of integrating $-3x\cos{4x}$?

Yes, for example, the integral of $-3x\cos{4x}$ can be solved as follows:
$\int -3x\cos{4x}dx$
$= -3 \int x \cos{4x}dx$ (using the constant multiple rule)
$= -3 \Big(\frac{x}{4}\sin{4x} - \frac{1}{4}\int \sin{4x}dx \Big)$ (using the product rule)
$= -\frac{3x}{4}\sin{4x} + \frac{3}{16}\cos{4x} + C$ (using the integration formula and simplifying)
So the antiderivative of $-3x\cos{4x}$ is $-\frac{3x}{4}\sin{4x} + \frac{3}{16}\cos{4x} + C$, where $C$ is the constant of integration.

Similar threads

Replies
8
Views
1K
Replies
6
Views
2K
Replies
1
Views
1K
Replies
4
Views
2K
Replies
1
Views
1K
Replies
3
Views
2K
Replies
1
Views
1K
Replies
3
Views
1K
Replies
3
Views
2K
Back
Top