- #1
karush
Gold Member
MHB
- 3,269
- 5
\\text{w8.4.13 Integration by Parts} nmh{2000}
$\displaystyle
I=\int \sin\left({\sqrt{x}}\right) \ d{t}
=2\sin\left({\sqrt{x}}\right)
-2\sqrt{x}\cos\left({\sqrt{x}}\right)+C$
$\begin{align}
\displaystyle
u& = {\sin\left({\sqrt{x}}\right)} &
dv&={1} \ dx \\ \\
du&={\frac{\cos\left({\sqrt{x}}\right)}{2\sqrt{x}}} dx&
v& ={x}
\end{align}$
$\displaystyle uv-\int v \ du $
$\displaystyle
I=
x\sin\left({\sqrt{x}}\right)
-\int \frac{x\cos\left(\sqrt{x}\right)}{2\sqrt{x}} \ dx $
$\text{now what ... or is there a better way to do this? } $
$\displaystyle
I=\int \sin\left({\sqrt{x}}\right) \ d{t}
=2\sin\left({\sqrt{x}}\right)
-2\sqrt{x}\cos\left({\sqrt{x}}\right)+C$
$\begin{align}
\displaystyle
u& = {\sin\left({\sqrt{x}}\right)} &
dv&={1} \ dx \\ \\
du&={\frac{\cos\left({\sqrt{x}}\right)}{2\sqrt{x}}} dx&
v& ={x}
\end{align}$
$\displaystyle uv-\int v \ du $
$\displaystyle
I=
x\sin\left({\sqrt{x}}\right)
-\int \frac{x\cos\left(\sqrt{x}\right)}{2\sqrt{x}} \ dx $
$\text{now what ... or is there a better way to do this? } $
Last edited: