Integrating $\cos 2\theta$ and $\tan\theta$

  • MHB
  • Thread starter juantheron
  • Start date
  • Tags
    Integrating
In summary, integrating cos 2theta and tan theta involves using the appropriate trigonometric identities and methods such as the power rule and substitution method. These integrals are important in scientific research as they allow for the calculation of physical quantities and have applications in various fields. Other methods such as trigonometric substitution or the double angle formula can also be used for these types of integrals.
  • #1
juantheron
247
1
$(1)\;\; \displaystyle \int \cos 2\theta\cdot \ln \left(\frac{\cos \theta +\sin \theta}{\cos \theta -\sin \theta}\right)d\theta$

$(2)\;\; \displaystyle \int \frac{\tan 2\theta}{\sqrt{\sin^6 \theta +\cos ^6 \theta}}d\theta$

I have Tried for (II) :: $\displaystyle \int \frac{\tan 2\theta}{\sqrt{\sin^6 \theta +\cos ^6 \theta}}d\theta$

We can write $\displaystyle \sqrt{\sin^6 \theta +\cos ^6 \theta} = 1-3\sin^2 \theta .\cos^2 \theta = 1-\frac{3}{4}\sin^2 2\theta = \frac{4-3\sin^2 \theta}{4}$

$\displaystyle \int\frac{\sin 2\theta}{\cos 2\theta}\cdot \frac{2}{\sqrt{3-4\sin^2 2\theta}}d\theta $Now I am struch here,

Similarly My Try for (I) one

$\displaystyle \int \cos 2\theta\cdot \ln \left(\frac{\cos \theta +\sin \theta}{\cos \theta -\sin \theta}\right)d\theta = \int \cos2 \theta \cdot \ln\left(\frac{1+\tan \theta}{1-\tan \theta}\right)d\theta$

Now How can i solve after that

Help me

Thanks
 
Physics news on Phys.org
  • #2
For the first one, I would try integration by parts, where:

\(\displaystyle u=\ln\left(\frac{\cos(\theta)+\sin(\theta)}{ \cos(\theta)-\sin(\theta)} \right)=\ln\left(\frac{1+\sin(2\theta)}{ \cos(2\theta)} \right)\,\therefore\,du= \frac{\sin(2\theta)-1}{\sin(2\theta)}\)

\(\displaystyle dv=\cos(2\theta)\,d\theta\,\therefore\,v=\frac{1}{2}\sin(2\theta)\)
 
  • #3
jacks said:
$(1)\;\; \displaystyle \int \cos 2\theta\cdot \ln \left(\frac{\cos \theta +\sin \theta}{\cos \theta -\sin \theta}\right)d\theta$

$(2)\;\; \displaystyle \int \frac{\tan 2\theta}{\sqrt{\sin^6 \theta +\cos ^6 \theta}}d\theta$

I have Tried for (II) :: $\displaystyle \int \frac{\tan 2\theta}{\sqrt{\sin^6 \theta +\cos ^6 \theta}}d\theta$

We can write $\displaystyle \sqrt{\sin^6 \theta +\cos ^6 \theta} = 1-3\sin^2 \theta .\cos^2 \theta = 1-\frac{3}{4}\sin^2 2\theta = \frac{4-3\sin^2 \theta}{4}$

$\displaystyle \int\frac{\sin 2\theta}{\cos 2\theta}\cdot \frac{2}{\sqrt{3-4\sin^2 2\theta}}d\theta $Now I am struch here,

Similarly My Try for (I) one

$\displaystyle \int \cos 2\theta\cdot \ln \left(\frac{\cos \theta +\sin \theta}{\cos \theta -\sin \theta}\right)d\theta = \int \cos2 \theta \cdot \ln\left(\frac{1+\tan \theta}{1-\tan \theta}\right)d\theta$

Now How can i solve after that

Help me

Thanks

No need for integration by parts (at least not until after a great deal of simplification)...

[tex]\displaystyle \begin{align*} \frac{\cos{(\theta)} + \sin{(\theta)} }{ \cos{(\theta)} - \sin{(\theta)} } &= \frac{\left[ \cos{(\theta)} + \sin{(\theta)} \right] ^2}{ \left[ \cos{(\theta)} - \sin{(\theta)} \right] \left[ \cos{(\theta)} + \sin{(\theta)} \right] } \\ &= \frac{\cos^2{(\theta)} + 2\sin{(\theta)}\cos{(\theta)} + \sin^2{(\theta)}}{\cos^2{(\theta)} - \sin^2{(\theta)}} \\ &= \frac{1 + \sin{(2\theta)}}{\cos{(2\theta)}} \\ &= \frac{1 + \sin{(2\theta)}}{\sqrt{1 - \sin^2{(2\theta)}}} \end{align*}[/tex]

So for

[tex]\displaystyle \begin{align*} \int{ \cos{(2\theta)} \ln{ \left[ \frac{\cos{(\theta)} + \sin{(\theta)}}{\cos{(\theta)} - \sin{(\theta)}} \right] } \, d\theta} = \frac{1}{2} \int{ 2\cos{(2\theta)}\ln{ \left[ \frac{1 + \sin{(2\theta)}}{\sqrt{1 - \sin^2{(2\theta)}}} \right] }\,d\theta} \end{align*}[/tex]

Let [tex]\displaystyle \begin{align*} x = \sin{(2\theta)} \implies dx = 2\cos{(2\theta)} \, d\theta \end{align*}[/tex] and the integral becomes

[tex]\displaystyle \begin{align*} \frac{1}{2} \int{ \ln{ \left[ \frac{1 + x}{\sqrt{1 - x^2}} \right] }\,dx } &= \frac{1}{2} \int{ \ln{ \left( 1 + x \right) } - \ln{ \left[ \left( 1 - x^2 \right) ^{\frac{1}{2}} \right] } \, dx } \\ &= \frac{1}{2} \int{ \ln{ \left( 1 + x \right) } - \frac{1}{2} \ln{ \left[ \left( 1 - x \right) \left( 1 + x \right) \right] } \, dx } \\ &= \int{ \ln{ \left( 1 + x \right) } - \frac{1}{2}\ln{ \left( 1 - x \right) } - \frac{1}{2} \ln{ \left( 1 + x \right) } \,dx} \\ &= \frac{1}{2} \int{ \frac{1}{2} \ln{ \left( 1 + x \right) } - \frac{1}{2} \ln{ \left( 1 - x \right) } \, dx } \\ &= \frac{1}{4} \int{ \ln{ \left( 1 + x \right) } - \ln{ \left( 1 - x \right) } \, dx} \end{align*}[/tex]

Both of these integrals should be very easy to evaluate...
 
  • #4
jacks said:
$(2)\;\; \displaystyle \int \frac{\tan 2\theta}{\sqrt{\sin^6 \theta +\cos ^6 \theta}}d\theta$

I have Tried for (II) :: $\displaystyle \int \frac{\tan 2\theta}{\sqrt{\sin^6 \theta +\cos ^6 \theta}}d\theta$

We can write $\displaystyle \sqrt{\sin^6 \theta +\cos ^6 \theta} = 1-3\sin^2 \theta .\cos^2 \theta = 1-\frac{3}{4}\sin^2 2\theta = \frac{4-3\sin^2 \theta}{4}$

$\displaystyle \int\frac{\sin 2\theta}{\cos 2\theta}\cdot \frac{2}{\sqrt{3-4\sin^2 2\theta}}d\theta $Now I am struch here,

Your approach is a good one, assuming your identities are correct (I haven't checked). From here

[tex]\displaystyle \begin{align*} \int{ \frac{2\sin{(2\theta)}}{\cos{(2\theta)}\sqrt{3 - 4\sin^2{(2\theta)}}}\,d\theta} &= -\int{\frac{-2\sin{(2\theta)}}{\cos{(2\theta)}\sqrt{3 - 4 \left[ 1 - \cos^2{(2\theta)} \right] }}\,d\theta} \\ &= -\int{\frac{-2\sin{(2\theta)}}{\cos{(2\theta)}\sqrt{3 - 4 + \cos^2{(2\theta)}}}\,d\theta} \\ &= -\int{\frac{-2\sin{(2\theta)}}{\cos{(2\theta)}\sqrt{\cos^2{( 2 \theta )} - 1}}\,d\theta} \end{align*}[/tex]

Now a substitution of the form [tex]\displaystyle \begin{align*} \sec{(x)} = \cos{(2\theta)} \implies \sec{(x)}\tan{(x)}\,dx &= -2\sin{(2\theta)} \end{align*}[/tex] is appropriate, giving

[tex]\displaystyle \begin{align*} -\int{\frac{-2\sin{(2\theta)}}{\cos{(2\theta)}\sqrt{\cos^2{(2 \theta )} - 1}}\,d\theta} &= -\int{\frac{\sec{(x)}\tan{(x)}}{\sec{(x)}\sqrt{\sec^2{(x)} - 1}}\,dx} \\ &= -\int{\frac{\tan{(x)}}{\sqrt{\tan^2{(x)}}}\,dx} \\ &= -\int{\frac{\tan{(x)}}{\tan{(x)}}\,dx} \\ &= -\int{1\,dx} \\ &= -x + C \\ &= -\textrm{arsec}\,{\left[ \cos{(2\theta)} \right] } + C \end{align*}[/tex]
 
Last edited:

FAQ: Integrating $\cos 2\theta$ and $\tan\theta$

How do you integrate cos 2theta?

To integrate cos 2theta, you can use the formula cos 2theta = 1 - 2sin^2 theta. Then, you can use the power rule to integrate the resulting expression.

What is the process for integrating tan theta?

To integrate tan theta, you can use the substitution method by substituting u = tan theta and du = sec^2 theta dtheta. You can then integrate the resulting expression using the power rule.

Can you integrate both cos 2theta and tan theta in the same equation?

Yes, you can integrate both cos 2theta and tan theta in the same equation by using the trigonometric identity cos 2theta = 1 - 2sin^2 theta. This will allow you to simplify the expression and then use the substitution method to integrate it.

Is it possible to use a different method to integrate cos 2theta and tan theta?

Yes, there are other methods that can be used to integrate cos 2theta and tan theta, such as the trigonometric substitution method or the double angle formula. However, the power rule and substitution method are the most commonly used methods for these types of integrals.

Can you explain the importance of integrating cos 2theta and tan theta in scientific research?

Integrating cos 2theta and tan theta is important in scientific research as it allows for the calculation of various physical quantities, such as the work done by a force or the motion of objects in a circular path. These integrals also have applications in fields such as optics, mechanics, and electromagnetism.

Similar threads

Replies
8
Views
658
Replies
3
Views
2K
Replies
8
Views
1K
Replies
29
Views
2K
Replies
4
Views
1K
Replies
6
Views
2K
Back
Top