- #1
juantheron
- 247
- 1
$(1)\;\; \displaystyle \int \cos 2\theta\cdot \ln \left(\frac{\cos \theta +\sin \theta}{\cos \theta -\sin \theta}\right)d\theta$
$(2)\;\; \displaystyle \int \frac{\tan 2\theta}{\sqrt{\sin^6 \theta +\cos ^6 \theta}}d\theta$
I have Tried for (II) :: $\displaystyle \int \frac{\tan 2\theta}{\sqrt{\sin^6 \theta +\cos ^6 \theta}}d\theta$
We can write $\displaystyle \sqrt{\sin^6 \theta +\cos ^6 \theta} = 1-3\sin^2 \theta .\cos^2 \theta = 1-\frac{3}{4}\sin^2 2\theta = \frac{4-3\sin^2 \theta}{4}$
$\displaystyle \int\frac{\sin 2\theta}{\cos 2\theta}\cdot \frac{2}{\sqrt{3-4\sin^2 2\theta}}d\theta $Now I am struch here,
Similarly My Try for (I) one
$\displaystyle \int \cos 2\theta\cdot \ln \left(\frac{\cos \theta +\sin \theta}{\cos \theta -\sin \theta}\right)d\theta = \int \cos2 \theta \cdot \ln\left(\frac{1+\tan \theta}{1-\tan \theta}\right)d\theta$
Now How can i solve after that
Help me
Thanks
$(2)\;\; \displaystyle \int \frac{\tan 2\theta}{\sqrt{\sin^6 \theta +\cos ^6 \theta}}d\theta$
I have Tried for (II) :: $\displaystyle \int \frac{\tan 2\theta}{\sqrt{\sin^6 \theta +\cos ^6 \theta}}d\theta$
We can write $\displaystyle \sqrt{\sin^6 \theta +\cos ^6 \theta} = 1-3\sin^2 \theta .\cos^2 \theta = 1-\frac{3}{4}\sin^2 2\theta = \frac{4-3\sin^2 \theta}{4}$
$\displaystyle \int\frac{\sin 2\theta}{\cos 2\theta}\cdot \frac{2}{\sqrt{3-4\sin^2 2\theta}}d\theta $Now I am struch here,
Similarly My Try for (I) one
$\displaystyle \int \cos 2\theta\cdot \ln \left(\frac{\cos \theta +\sin \theta}{\cos \theta -\sin \theta}\right)d\theta = \int \cos2 \theta \cdot \ln\left(\frac{1+\tan \theta}{1-\tan \theta}\right)d\theta$
Now How can i solve after that
Help me
Thanks