- #1
Dustinsfl
- 2,281
- 5
\begin{alignat*}{3}
u_t(r,\theta,0) & = & \delta(\mathbf{x} - \mathbf{x}_0) & = & \delta(r - r_0, \theta - \theta_0)
\end{alignat*}
$$
\int_A\delta(\mathbf{x} - \mathbf{x}_0)f(r,\theta)dA = \int_0^{2\pi}\int_0^a\delta(r - r_0, \theta - \theta_0)f(r,\theta)rdrd\theta = f(\mathbf{x}_0)
$$
How do I solve this?
$$
u_t(r,\theta,0) = \frac{c}{a}\sum_{n = 1}^{\infty} \sum_{m = 0}^{ \infty} \mathcal{J}_{mn} \left(z_{mn}\frac{r}{a}\right)z_{mn} \left[C_{mn}\cos m\theta + D_{mn}\sin m\theta\right] = \delta(r - r_0,\theta - \theta_0).
$$
u_t(r,\theta,0) & = & \delta(\mathbf{x} - \mathbf{x}_0) & = & \delta(r - r_0, \theta - \theta_0)
\end{alignat*}
$$
\int_A\delta(\mathbf{x} - \mathbf{x}_0)f(r,\theta)dA = \int_0^{2\pi}\int_0^a\delta(r - r_0, \theta - \theta_0)f(r,\theta)rdrd\theta = f(\mathbf{x}_0)
$$
How do I solve this?
$$
u_t(r,\theta,0) = \frac{c}{a}\sum_{n = 1}^{\infty} \sum_{m = 0}^{ \infty} \mathcal{J}_{mn} \left(z_{mn}\frac{r}{a}\right)z_{mn} \left[C_{mn}\cos m\theta + D_{mn}\sin m\theta\right] = \delta(r - r_0,\theta - \theta_0).
$$