MHB Integrating factor, initial value problem

jasonmcc
Messages
10
Reaction score
0
$
kxy \frac{dy}{dx} = y^2 - x^2 \quad , \quad
y(1) = 0
$

My professor suggests substituting P in for y^2, such that:

$
P = y^2
dP = 2y dy
$

I am proceeding with an integrating factor method, but unable to use it to separate the variables, may be coming up with the wrong integrating factor ( x )
 
Physics news on Phys.org
It's Bernoulli. I would do
\begin{align*}
kxy \frac{dy}{dx}&=y^{2}-x^{2} \\
\frac{dy}{dx}&= \frac{y}{kx}- \frac{x}{ky} \\
\frac{dy}{dx}- \frac{y}{kx}&=- \frac{x}{ky}.
\end{align*}
Then you can see that the appropriate substitution is what your professor suggested, which is $v=y^{1-(-1)}=y^{2}$. Then $dv/dx = 2y dy/dx$. Multiplying the equation by $2y$ yields
\begin{align*}
2y \frac{dy}{dx}- \frac{2 y^{2}}{kx}&=- \frac{2 x}{k} \\
\frac{dv}{dx}- \frac{2 v}{kx}&=- \frac{2x}{k}.
\end{align*}
This is first-order linear in $v$, so you can use the integrating factor method here.
 
There is the following linear Volterra equation of the second kind $$ y(x)+\int_{0}^{x} K(x-s) y(s)\,{\rm d}s = 1 $$ with kernel $$ K(x-s) = 1 - 4 \sum_{n=1}^{\infty} \dfrac{1}{\lambda_n^2} e^{-\beta \lambda_n^2 (x-s)} $$ where $y(0)=1$, $\beta>0$ and $\lambda_n$ is the $n$-th positive root of the equation $J_0(x)=0$ (here $n$ is a natural number that numbers these positive roots in the order of increasing their values), $J_0(x)$ is the Bessel function of the first kind of zero order. I...
Are there any good visualization tutorials, written or video, that show graphically how separation of variables works? I particularly have the time-independent Schrodinger Equation in mind. There are hundreds of demonstrations out there which essentially distill to copies of one another. However I am trying to visualize in my mind how this process looks graphically - for example plotting t on one axis and x on the other for f(x,t). I have seen other good visual representations of...
Back
Top