- #1
ognik
- 643
- 2
As the 2nd part of a question, we start with the Fourier sin series expansion of dirac delta function $\delta(x-a)$ in the half-interval (0,L), (0 < a < L):
$ \delta(x-a) = \frac{2}{L} \sum_{n=1}^{\infty} sin \frac{n \pi a}{L} sin \frac{n \pi x}{L} $
The questions goes on "By integrating both sides of this eqtn from 0 to x, show that the cos expansion of the square wave $ f(x) =\begin{cases}0,\; 0\le x \lt a \\ 1,\; a \lt 0 \lt L\end{cases}$
is $ f(x) = \frac{2}{\pi} \sum_{n=1}^{\infty}\frac{1}{n} sin(\frac{n\pi a}{L}) - \frac{2}{\pi} \sum_{n=1}^{\infty}\frac{1}{n} sin(\frac{n\pi a}{L}) sin(\frac{n\pi x}{L}) $
But when integrating both sides I get:
$ \int_{0}^{x}\delta(x-a).1 \,dx = \frac{2}{L} \sum_{n=1}^{\infty} sin \frac{n \pi a}{L} \int_{0}^{x} sin \frac{n \pi x}{L} \,dx$
$ = \frac{2}{L} \sum_{n=1}^{\infty} sin \frac{n \pi a}{L} (\frac{L}{n\pi}) [-cos \frac{n \pi x}{L}]^x_0 $
$ = -\frac{2}{\pi} \sum_{n=1}^{\infty}\frac{1}{n} sin(\frac{n\pi a}{L}) - \frac{2}{\pi} \sum_{n=1}^{\infty}\frac{1}{n} sin(\frac{n\pi a}{L}) cos(\frac{n\pi x}{L}) $
It looks to me that I am correct, could someone please check this?
$ \delta(x-a) = \frac{2}{L} \sum_{n=1}^{\infty} sin \frac{n \pi a}{L} sin \frac{n \pi x}{L} $
The questions goes on "By integrating both sides of this eqtn from 0 to x, show that the cos expansion of the square wave $ f(x) =\begin{cases}0,\; 0\le x \lt a \\ 1,\; a \lt 0 \lt L\end{cases}$
is $ f(x) = \frac{2}{\pi} \sum_{n=1}^{\infty}\frac{1}{n} sin(\frac{n\pi a}{L}) - \frac{2}{\pi} \sum_{n=1}^{\infty}\frac{1}{n} sin(\frac{n\pi a}{L}) sin(\frac{n\pi x}{L}) $
But when integrating both sides I get:
$ \int_{0}^{x}\delta(x-a).1 \,dx = \frac{2}{L} \sum_{n=1}^{\infty} sin \frac{n \pi a}{L} \int_{0}^{x} sin \frac{n \pi x}{L} \,dx$
$ = \frac{2}{L} \sum_{n=1}^{\infty} sin \frac{n \pi a}{L} (\frac{L}{n\pi}) [-cos \frac{n \pi x}{L}]^x_0 $
$ = -\frac{2}{\pi} \sum_{n=1}^{\infty}\frac{1}{n} sin(\frac{n\pi a}{L}) - \frac{2}{\pi} \sum_{n=1}^{\infty}\frac{1}{n} sin(\frac{n\pi a}{L}) cos(\frac{n\pi x}{L}) $
It looks to me that I am correct, could someone please check this?