- #1
juantheron
- 247
- 1
$\displaystyle \int\frac{1}{(a+b\sin x)^2}dx$, where $a>b$
My Trial :: Using Integration by parts::
$\displaystyle \int\frac{1}{(a+b\sin x)^2}dx = \frac{1}{b}\int -\csc (x)\cdot \frac{-b\sin x}{(a+b\sin x)^2}dx$
$\displaystyle -\frac{1}{b}\cdot \csc (x)\cdot \frac{-1}{(a+b\sin x)}+\int (-\csc x \cdot \cot x)\cdot \frac{-1}{(a+b\sin x)}dx$
Now How Can I Calculate (II) Integral
Help me
Thanks
My Trial :: Using Integration by parts::
$\displaystyle \int\frac{1}{(a+b\sin x)^2}dx = \frac{1}{b}\int -\csc (x)\cdot \frac{-b\sin x}{(a+b\sin x)^2}dx$
$\displaystyle -\frac{1}{b}\cdot \csc (x)\cdot \frac{-1}{(a+b\sin x)}+\int (-\csc x \cdot \cot x)\cdot \frac{-1}{(a+b\sin x)}dx$
Now How Can I Calculate (II) Integral
Help me
Thanks