- #1
MartynaJ
- 19
- 1
- Homework Statement
- Integral of ##\sigma=\chi\int{dA/A}## for a sphere assuming a constant and surface-area independent ##\chi##
- Relevant Equations
- I am trying to integrate ##\sigma=\chi\int{dA/A}## for a sphere. The answer is supposed to be ##\sigma(R)=\chi(R^2/R_0^2-1)##
I am trying to integrate ##\sigma=\chi\int\frac{dA}{A}## for a sphere. The answer is supposed to be ##\sigma(R)=\chi(R^2/R_0^2-1)##. The answer I keep getting is ##\sigma(R)=2\chi ln\frac{R}{R_0}##. I also tried doing it in spherical coordinates, and all I get for the integration of ##\int_0^\frac{\pi}{2}\frac{dA}{A}=1##. Not sure where I am going wrong... please help!
Last edited: