- #1
MathewsMD
- 433
- 7
## \frac {1}{4} \int sin^2 (2x)dx = I = \frac {1}{4} [- \frac {1}{2} sin(2x)cos(2x) + \int cos^2 (2x)dx]## when ##u = sin(2x), dv = sin(2x)dx, v= - \frac {cos(2x)}{2}## and ##du = 2cos(2x)dx##
Now simplifying ##\int cos^2 (2x)dx## you get ## x - \int sin^2 (2x)dx = x - I##
Then,
## I = \frac {1}{4} [- \frac {1}{2}sin(2x)cos(2x) + x - I)] ##
## \frac {5}{4} I = \frac {1}{4} [- \frac {1}{2}sin(2x)cos(2x) + x] ##
## I = \frac {1}{5} [ -\frac {1}{2}sin(2x)cos(2x) + x] ##
Could anyone verify my solution? The next part is actually making this an indefinite integral of ##\int^{\frac {∏}{2}}_0 sin^2 (2x)dx## and when I solve this, my answer is always ##\frac {∏}{10}## and this is incorrect.
Now simplifying ##\int cos^2 (2x)dx## you get ## x - \int sin^2 (2x)dx = x - I##
Then,
## I = \frac {1}{4} [- \frac {1}{2}sin(2x)cos(2x) + x - I)] ##
## \frac {5}{4} I = \frac {1}{4} [- \frac {1}{2}sin(2x)cos(2x) + x] ##
## I = \frac {1}{5} [ -\frac {1}{2}sin(2x)cos(2x) + x] ##
Could anyone verify my solution? The next part is actually making this an indefinite integral of ##\int^{\frac {∏}{2}}_0 sin^2 (2x)dx## and when I solve this, my answer is always ##\frac {∏}{10}## and this is incorrect.
Last edited: