- #1
Saitama
- 4,243
- 93
Attempt:
If $\displaystyle U_n=\int_0^{\pi/2} \frac{\sin^2(nx)}{\sin^2x}\,dx$, then find $U_n-U_{n-1}$.
Attempt:
$$U_n=\int_0^{\pi/2} \frac{\sin^2(nx)}{\sin^2x}\,dx$$
$$U_{n-1}=\int_0^{\pi/2} \frac{\sin^2((n-1)x)}{\sin^2x}\,dx$$
$$\Rightarrow U_n-U_{n-1}=\int_0^{\pi/2} \frac{(\sin(nx)-\sin((n-1)x)(\sin(nx)+\sin(n-1)x)}{\sin^2x}\,dx$$
I write the following:
$$\sin(nx)-\sin((n-1)x=2\cos\left(\frac{2n-1}{2}x\right)\sin\left(\frac{x}{2}\right)$$
$$\sin(nx)+\sin((n-1)x=2\sin\left(\frac{2n-1}{2}x\right)\cos\left(\frac{x}{2}\right)$$
The product of above can be written as follows:
$$(\sin(nx)-\sin((n-1)x)(\sin(nx)+\sin((n-1)x)=\sin(x)\sin((2n-1)x)$$
Hence,
$$U_n-U_{n-1}=\int_0^{\pi/2} \frac{\sin((2n-1)x)}{\sin x}\,\,dx$$
I am not sure how to proceed after this. I tried writing $\sin((2n-1)x)=\sin(2nx)\cos(x)-\sin(x)\cos(2nx)$ but that doesn't seem to help. :(
Any help is appreciated. Thanks!
If $\displaystyle U_n=\int_0^{\pi/2} \frac{\sin^2(nx)}{\sin^2x}\,dx$, then find $U_n-U_{n-1}$.
Attempt:
$$U_n=\int_0^{\pi/2} \frac{\sin^2(nx)}{\sin^2x}\,dx$$
$$U_{n-1}=\int_0^{\pi/2} \frac{\sin^2((n-1)x)}{\sin^2x}\,dx$$
$$\Rightarrow U_n-U_{n-1}=\int_0^{\pi/2} \frac{(\sin(nx)-\sin((n-1)x)(\sin(nx)+\sin(n-1)x)}{\sin^2x}\,dx$$
I write the following:
$$\sin(nx)-\sin((n-1)x=2\cos\left(\frac{2n-1}{2}x\right)\sin\left(\frac{x}{2}\right)$$
$$\sin(nx)+\sin((n-1)x=2\sin\left(\frac{2n-1}{2}x\right)\cos\left(\frac{x}{2}\right)$$
The product of above can be written as follows:
$$(\sin(nx)-\sin((n-1)x)(\sin(nx)+\sin((n-1)x)=\sin(x)\sin((2n-1)x)$$
Hence,
$$U_n-U_{n-1}=\int_0^{\pi/2} \frac{\sin((2n-1)x)}{\sin x}\,\,dx$$
I am not sure how to proceed after this. I tried writing $\sin((2n-1)x)=\sin(2nx)\cos(x)-\sin(x)\cos(2nx)$ but that doesn't seem to help. :(
Any help is appreciated. Thanks!