- #1
karush
Gold Member
MHB
- 3,269
- 5
$\tiny{8.7.16}$
$$\int{t}^{3}\sqrt{1+{t}^{2}} \ dr
=\frac{\left({t}^{2}+1\right)^{5/2}}{5}
-\frac{\left({t}^{2}+1\right)^{3/2}}{3}+C$$
$$t=\tan\left({u}\right) \ \ \ dt=\sec^2\left({u}\right) \ du $$
Substituting
$$\int\tan^3\left({u}\right)\sec^3\left({u}\right) \ du $$
Which doesn't look like a good option ??
$$\int{t}^{3}\sqrt{1+{t}^{2}} \ dr
=\frac{\left({t}^{2}+1\right)^{5/2}}{5}
-\frac{\left({t}^{2}+1\right)^{3/2}}{3}+C$$
$$t=\tan\left({u}\right) \ \ \ dt=\sec^2\left({u}\right) \ du $$
Substituting
$$\int\tan^3\left({u}\right)\sec^3\left({u}\right) \ du $$
Which doesn't look like a good option ??