- #1
MorallyObtuse
- 45
- 0
Hi,
Set up the triple integral in spherical coordinates to find the volume bounded by \(\displaystyle z = \sqrt{4-x^2-y^2}\), \(\displaystyle z=\sqrt{1-x^2-y^2}\), where \(\displaystyle x \ge 0\) and \(\displaystyle y \ge 0\).
\(\displaystyle \int_0^{2\pi} \int_0^2 \int_{-\sqrt{4-x^2-y^2}}^{\sqrt{4-x^2-y^2}} r\ dz\ dr\ d\theta\)
Set up the triple integral in spherical coordinates to find the volume bounded by \(\displaystyle z = \sqrt{4-x^2-y^2}\), \(\displaystyle z=\sqrt{1-x^2-y^2}\), where \(\displaystyle x \ge 0\) and \(\displaystyle y \ge 0\).
\(\displaystyle \int_0^{2\pi} \int_0^2 \int_{-\sqrt{4-x^2-y^2}}^{\sqrt{4-x^2-y^2}} r\ dz\ dr\ d\theta\)